(1+tanA+secA) (1+cotA-cosecA)
Answers
Answered by
0
Answer:
Step-by-step explanation:
(1+tanA+secA) (1+cotA-cosecA)
=> [1 + SinA/CosA + 1/CosA] [ 1 + CosA/SinA - 1/SinA]
=> [(CosA + SinA + 1) / CosA] [ (SinA + CosA - 1)/SinA]
=> 1/SinACosA { [(SinA+CosA) + 1][(SinA+CosA) - 1] }
//the expression in curly brackets is of form (a + b)(a-b) => a² - b²
=> 1/SinACosA [ (SinA+CosA)² - 1²]
//(SinA+CosA)² is of form (a + b)² => a² + b² + 2ab
=> 1/SinACosA [ Sin²A + Cos²A + 2SinACosA - 1 ]
//We know that Sin²A + Cos²A = 1
=> 1/SinACosA [ 1 + 2SinACosA - 1]
=> 2SinACosA/SinACosA
=> 2
Answered by
2
Answer:
hope it's helpful
Similar questions