1+tanx tan x/2= secx = tanx cotx/2 - 1....prove it
Answers
solution by biology student. I am from Biology stream
It is proven that 1+tanx tan x/2= secx = tanx cotx/2 - 1
Given:
1+tanx tan x/2= secx = tanx cotx/2 - 1
To find:
Prove that 1+tanx tan x/2 = secx = tanx cotx/2 - 1
Solution:
Take 1+tanx tan x/2 = secx
Here LHS = 1+tanx tan x/2
= [ ∵ tan = sin/cos ]
= [ ∵ cosA cosB + sinA sinB = cos (A-B) ]
=
=
= = sec x = RHS
⇒ ∴ LHS = RHS
⇒ 1+tanx tan x/2 = sec x ---(1)
Take tanx cotx/2 - 1 = secx
Take LHS tanx cotx/2 - 1
⇒
= [ ∵ sinA cosB - cosA sinB = sin(A-B) ]
=
=
= = sec x = RHS
⇒ LHS = RHS
⇒ tanx cotx/2 - 1 = secx ------ (2)
From (1) and (2)
1+tanx tan x/2= secx = tanx cotx/2 - 1
Hence,
It is proven that 1+tanx tan x/2= secx = tanx cotx/2 - 1
#SPJ2