Math, asked by AdityaRaj2009, 4 months ago


1. The area of a triangle is 90 cm? If its base is 15 cm, find its attitude.​

Answers

Answered by MrSanju0123
140

 {\huge{\boxed{ \huge{ \boxed{\mathfrak{\underline{ \underline{ \blue{ \bigstar{Answer}{ \bigstar}}}}}}}}}}

Altitude of the given Triangle = 12 cm

Step-by-step explanation:

  \huge \mathbb{ \green{ \boxed{ \underline{ \underline{ \bf{GiveN}}}}}}

  • Area of a Triangle = 90 cm

  • Base = 15cm

  \huge \mathbb{ \green{ \boxed{ \underline{ \underline{ \bf{To \:  Find }}}}}}

  • The Altitude of The Triangle

  \huge \mathbb{ \green{ \boxed{ \underline{ \underline{ \bf{SolutioN}}}}}}

  • We know that Area of a Triangle =\bf \frac{1}{2}\times \: bh

  •  \bf \frac {1}{2} \times base\times \: height

  • Here in this question base is given as 15 cm

  • So, substitute the value of base in \bf \frac{1}{2}\times \:bh  = Area

  • \bf \frac{1}{2}\times15h = Area

  • Area = 90cm

  • \bf \frac{1}{2}\times15h = 90 =

  •  \bf 1 ×  15h = 90 × 2

  •  \bf h = \frac{90 × 2}{15}

  •  \bf h  = \frac{\cancel90 × 2}{\cancel15}

  •  \implies 6 × 2 = 12 cm

  • So, Altitude = 12cm

♤_________________♤

  \huge \mathbb{ \blue{ \boxed{ \underline{ \underline{ \bf{CheckinG}}}}}}

To check our answer we have to substitute the value of Base and Altitude in the equation \bf \frac{1}{2}  \times bh and check whether our answer is 90.

  • \bf \frac{1}{2}  \times bh

  • \bf \frac{1}{2} \times \: 15 \times  12

  • \bf \frac{1}{\cancel2}  \times 15\times  \cancel12

  • \bf 15 \times 6 = 90

  • 90

  • So, we got the answer as 90 !

Hence Verified ✔✔

Answered by thapaavinitika6765
4

Using Area of Trangle Formula, We get Area of Triangle = 1/2*b*h

90 = 1/2*15*h

90 = 15/2*h

180 = 15*h

12 = h

Similar questions