1) The denominator of a fraction is 4 more than the numerator. If 2' is added to
the numerator the fraction becomes 5/7, then the original fraction is
a) 7/11
b) 2/6
c) 5/9
d) 3/7
Answers
Given :
The denominator of a fraction is 4 more than the numerator.
If 2 is added to the numerator the fraction becomes 5/7.
To Find :
The original fraction.
Solution :
\longmapsto\tt\bold{Let\:the\:Numerator=y}⟼LettheNumerator=y
As the denominator of a fraction is 4 more than the numerator. So ,
\longmapsto\tt\bold{Denominator=y+4}⟼Denominator=y+4
Now :
If 2 is added to the numerator then the fraction becomes 5/7 .So,
\longmapsto\tt{Numertor=y+2}⟼Numertor=y+2
A.T.Q :
\longmapsto\tt{\dfrac{y+2}{y+4}=\dfrac{5}{7}}⟼
y+4
y+2
=
7
5
\longmapsto\tt{7(y+2)=5(y+4)}⟼7(y+2)=5(y+4)
\longmapsto\tt{7y+14=5y+20}⟼7y+14=5y+20
\longmapsto\tt{7y-5y=20-14}⟼7y−5y=20−14
\longmapsto\tt{2y=6}⟼2y=6
\longmapsto\tt{y=\cancel\dfrac{6}{2}}⟼y=
2
6
\longmapsto\tt\bold{y=3}⟼y=3
Therefore :
\longmapsto\tt\bold{Numerator=3}⟼Numerator=3
\longmapsto\tt{Denominator=3+4}⟼Denominator=3+4
\longmapsto\tt\bold{7}⟼7
So , The Original fraction is 3/7....
Option d) 3/7 is correct...
Answer:
fductfghuhvgvgbh
Step-by-step explanation:
fttggggygygygygygygygygygygygygygyvybgygygygyggygygygygy