Math, asked by pachapraneeth35, 4 months ago

1. The Jacobian of p, q,r w.r.t

x, y, z given

p = x +y +z, x = y + z, r = z is

O 2

0 1

0 -1​

Answers

Answered by Novita21
4

Answer:

0 -1 answer. I can't explain

Answered by pulakmath007
4

SOLUTION

TO CHOOSE THE CORRECT OPTION

The Jacobian of p , q , r w.r.t x, y, z given

p = x + y + z , q = y + z , r = z is

  • 2

  • 1

  • - 1

CONCEPT TO BE IMPLEMENTED

If p , q , r are three functions of x , y , z then their Jacobian is

\displaystyle \sf{ =  \frac{ \partial (p,q,r)}{ \partial (x,y,z)} }

= \displaystyle \begin{vmatrix}  \frac{ \partial p}{ \partial x}  & \frac{ \partial p}{ \partial y} & \frac{ \partial p}{ \partial z}\\ \\  \frac{ \partial q}{ \partial x}  & \frac{ \partial q}{ \partial y} & \frac{ \partial q}{ \partial z} \\ \\ \frac{ \partial r}{ \partial x}  & \frac{ \partial r}{ \partial y} & \frac{ \partial r}{ \partial z} \end{vmatrix}

EVALUATION

Here it is given that

p , q , r are three functions of x , y , z

Now

p = x + y + z , q = y + z , r = z

Now the Jacobian

\displaystyle \sf{ =  \frac{ \partial (p,q,r)}{ \partial (x,y,z)} }

= \displaystyle \begin{vmatrix}  1  & 1 & 1\\ \\  0  & 1 & 1 \\ \\ 0  & 0 & 1 \end{vmatrix}

 = 1 + 0 + 0

 = 1

FINAL ANSWER

Hence the required Jacobian = 1

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If x=u^2-v^2,y=2uv find the jacobian of x, y with respect to u and v

https://brainly.in/question/34361788

2. given u=yzx , v= zxy, w =xyz then the value of d(u,v,w)/d(x,y,z) is (a) 0 (b) 1 (c) 2 (d) 4

https://brainly.in/question/34435016

Similar questions