Math, asked by vmuch32, 4 months ago

1. The perimeter of a triangle is 450 m and its
sides are in the ratio 12 : 5: 13. Find the
area of the triangle.
o the same.

Please solve this question from Area and Perimeter of Plane Figures ​

Answers

Answered by Ladylaurel
8

Answer :-

  • The area of triangle is 17280m².

Step-by-step explanation:

To Find :-

  • The area of triangle

Solution:

Given that,

  • The perimeter of triangle = 480m.
  • The sides of triangle = 12:5:13

Assumption:

Let us consider the sides of triangle as 12x, 5x and 13x.

As we know that,

\underline{\boxed{ \textbf{ \textsf{ \purple{Perimeter \: of \: triangle = Sum \: of \: all \: sides}}}}}

Therefore,

  • 12x + 5x + 13x = 480m

\longrightarrow \: \sf{12x + 5x + 13x = 480}

\longrightarrow \: \sf{17x + 13x = 480}

\longrightarrow \: \sf{20x = 480}

\longrightarrow \: \sf{x = \dfrac{480}{20}}

\longrightarrow \: \sf{x = \cancel{\dfrac{480}{20}}}

\longrightarrow \: \sf{x = \dfrac{48}{2}}

\longrightarrow \: \sf{x = \cancel{ \dfrac{48}{2}}}

\longrightarrow \: \sf{x = 24}

The sides are of ∆ are :-

  • 12x = 12*24 = 288m
  • 5x = 5*24 = 120m
  • 13x = 13*24 = 312m.

Now, Semi-perimeter of triangle :-

We know that,

\bigstar \: \underline{ \boxed{ \sf{Semi-perimeter \: of \: \triangle = \dfrac{Sum \: of \: all \: sides}{2}}}}

Therefore,

\longrightarrow \: \sf{ \dfrac{288 + 120 + 312}{2}}

\longrightarrow \: \sf{ \dfrac{720}{2}}

\longrightarrow \: \sf{ \cancel{\dfrac{720}{2}}}

\longrightarrow \: \sf{360}

Now, The area of ∆ :-

 \underline{ \boxed{ \sf{Area \: of \: \triangle = \sqrt{s(s-a)(s-b)(s-c)}}}}

Where,

  • a, b and c are the three sides of triangle.

 \sf{ \longrightarrow \:  \sqrt{s(s-a)(s-b)(s-c)}}

 \sf{ \longrightarrow \:  \sqrt{360(360 - 288)(360 - 120)(360 - 312)}}

 \sf{ \longrightarrow \:  \sqrt{360(72)(240)(48)}}

 \sf{ \longrightarrow \:  \sqrt{360 \times 72 \times 240 \times 48}}

 \sf{ \longrightarrow \:  \sqrt{298598400}}

 \sf{ \longrightarrow \: \boxed{ \sf{ \red{17280}}}}

Hence, The area of triangle is 17280m².

Similar questions