Science, asked by SiIentEyes, 3 months ago

1) Two charges of magnitude 5nC & -2nC are placed at points ( 2cm , 0 , 0 ) & ( 20cm , 0 , 0 ) in a region of space, where there is no external field.. Find electrostatic potential energy of the system.

2) An emf of 96 mV is induced in the windings of a coil when the current in the nearby coil is increased at the rate of 1.20 A/s. What is the mutual inductance of the two coils?​

Answers

Answered by WaterFairy
8

\huge{\underline{\mathtt{\red{A}\pink{N}\green{S}\blue{W}\purple{E}\orange{R}}}}

1 .Two charges of magnitude 5nC and - 2nC are placed at 2cm and 20cm from the origin respectively.

We know that,

\sf U = \dfrac{1}{4 \pi \epsilon_o} \times \dfrac{q_1q_2}{\Delta{r}}

Substituting the values,

\begin{gathered} \longrightarrow \sf U = 9 \times {10}^{9} \times \dfrac{5 \times {10}^{ - 9} \times - 2 \times {10}^{ - 9} }{20 \times {10}^{ - 2} - 2 \times {10}^{ - 2} } \\ \\ \longrightarrow \sf U = - \dfrac{9 \times 10 \times {10}^{ - 9} }{18 \times {10}^{ - 2} } \\ \\ \longrightarrow \ \boxed{ \boxed{\sf U = - 0.5 \times {10}^{ - 6} J}}\end{gathered}

2. Given Information,

EMF = 96mV

Rate of change of current w.r.t t = 1.20 A/s

Since,

\sf E = L \dfrac{dl}{dt}

Substituting the values,

\begin{gathered} \longrightarrow \sf 96 \times 10 {}^{ - 3} = L \times 1.2 \\ \\ \longrightarrow \boxed{ \boxed{\sf \: L = 8 \times {10}^{ - 2} H}}\end{gathered}

Answered by ItzVenomKingXx
0

\huge\colorbox{aqua}{Ãn§wer࿐ ❤}

\sf U = \dfrac{1}{4 \pi \epsilon_o} \times \dfrac{q_1q_2}{\Delta{r}} \\ \bf Substituting  \: the \:  values, \\ \begin{gathered}\begin{gathered} \longrightarrow \sf U = 9 \times {10}^{9} \times \dfrac{5 \times {10}^{ - 9} \times - 2 \times {10}^{ - 9} }{20 \times {10}^{ - 2} - 2 \times {10}^{ - 2} } \\ \\ \longrightarrow \sf U = - \dfrac{9 \times 10 \times {10}^{ - 9} }{18 \times {10}^{ - 2} } \\ \\ \longrightarrow \ \boxed{ \boxed{\sf U = - 0.5 \times {10}^{ - 6} J}}\end{gathered} \end{gathered} \\ \sf E = L \dfrac{dl}{dt} \\  \bf \: Substituting  \: the  \: values, \\ \begin{gathered}\begin{gathered} \longrightarrow \sf 96 \times 10 {}^{ - 3} = L \times 1.2 \\ \\ \longrightarrow \boxed{ \boxed{\sf \: L = 8 \times {10}^{ - 2} H}}\end{gathered}\end{gathered}

Similar questions