Math, asked by tripti2410, 1 year ago

1 upon sec theta -tan theta= sec theta +tan theta

Answers

Answered by Anonymous
28
 \huge \boxed{ \mathbb{ \ulcorner ANSWER: \urcorner}}

 \huge \boxed{Prove \: that :-}

 \large\bf = > \frac{1}{ \sec\theta - \tan \theta } = \sec \theta + \tan \theta.

 \large \boxed {\mathbb{SOLVING \: LHS.}}

 \huge \bf = \frac{1}{ \sec \theta - \tan \theta} .

 \large \bf = \frac{1}{ \sec \theta - \tan \theta} \times \frac{ \sec \theta + \tan \theta}{\sec \theta + \tan \theta}.

 \huge \bf = \frac{ \sec \theta + \tan \theta}{ { \sec}^{2} \theta - { \tan}^{2} \theta } .

[ → sec²x - tan²x = 1.]

 \huge \boxed{ = \sec \theta + \tan \theta}

✔✔Hence, it is proved ✅✅.

___________________________________

 \huge \boxed{ \mathbb{THANKS}}

 \huge \bf{ \mathbb{ \#BEBRAINLY.}}

TheUrvashi: Incredible
Anonymous: thanks
VijayaLaxmiMehra1: Nice ans
Anonymous: thanks
Answered by fanbruhh
60

 \huge{hey}

 \huge \bf{ \mathbb{ANSWER}}


 \bf{ \frac{1}{sec \theta - tan \theta} = sec \theta + tan \theta}



LHS

 \bf{ \frac{1}{sec \theta - tan \theta}  \times  \frac{sec \theta + tan \theta}{sec \theta + tan \theta}}

 \bf \huge{ \frac{sec \theta + cos \theta}{ {sec}^{2} \theta -  {tan}^{2}  \theta} }


 \huge{ {sec}^{2}  \theta +  {tan}^{2}  \theta}
(since sec²-tan²=1)


 \huge{hope \: it \: helps}

 \huge{ \mathfrak{thanks}}



TheUrvashi: Awesome
fanbruhh: thanks
shreaya: good
fanbruhh: thanks
Shanaya01: splendid
Similar questions