1. Use Euclid’s division algorithm to find the HCF of :-
i. 135 and 225
Answers
Answer:
1) 135 and 225
As you can see, from the question 225 is greater than 135. Therefore, by Euclid’s division algorithm, we have,
225 = 135 × 1 + 90
Now, remainder 90 ≠ 0, thus again using division lemma for 90, we get,
135 = 90 × 1 + 45
Again, 45 ≠ 0, repeating the above step for 45, we get,
90 = 45 × 2 + 0
The remainder is now zero, so our method stops here. Since, in the last step, the divisor is 45, therefore, HCF (225,135) = HCF (135, 90) = HCF (90, 45) = 45.
Hence, the HCF of 225 and 135 is 45.
Answer:
Given integers here are 225 and 135. On comparing, we find 225 > 135.
So, by applying Euclid’s division lemma to 225 and 135, we get
225 = 135 x 1 + 90
Since the remainder ≠ 0. So we apply the division lemma to the divisor 135 and remainder 90.
⇒ 135 = 90 x 1 + 45
Now we apply the division lemma to the new divisor 90 and remainder 45.
⇒ 90 = 45 x 2 + 0
Since the remainder at this stage is 0, the divisor will be the HCF.
Hence, the H.C.F of 225 and 135 is 45.