1. Using suitable identity find
2. Find the volume of the rectangular box whose length, breadth and height are ( 2x + 1 ), ( x - 2 ) and 3x.
3. Using suitable identity, evaluate ( 103² ).
4. If p + q = 25 and p² + q² = 225 then find pq.
5. Show that
Answers
Given expression is
We know,
So, using this identity, we get
Hence,
Length of rectangular box = 2x + 1
Breadth of rectangular box = x - 2
Height of rectangular box = 3x
So,
Hence,
We know,
So, using this identity, we get
Given that,
On squaring both sides, we get
Consider, LHS
Hence,
Answer:
Solution−1
Given expression is
\begin{gathered}\rm \: \bigg( \dfrac{3p}{2} - \dfrac{2q}{3} \bigg) ^{2} \\ \end{gathered}
(
2
3p
−
3
2q
)
2
We know,
\begin{gathered}\boxed{\sf{ \:\rm \: {(x - y)}^{2} = {x}^{2} - 2xy + {y}^{2} \: \: }} \\ \end{gathered}
(x−y)
2
=x
2
−2xy+y
2
So, using this identity, we get
\begin{gathered}\rm \: = \: {\bigg(\dfrac{3p}{2} \bigg) }^{2} + {\bigg(\dfrac{2q}{3} \bigg) }^{2} - 2 \times \dfrac{3p}{2} \times \dfrac{2q}{3} \\ \end{gathered}
=(
2
3p
)
2
+(
3
2q
)
2
−2×
2
3p
×
3
2q
\begin{gathered}\rm \: = \:\dfrac{9 {p}^{2} }{4} + \dfrac{ {4q}^{2} }{9} - 2pq \\ \end{gathered}
=
4
9p
2
+
9
4q
2
−2pq
Hence,
\begin{gathered}\rm\implies\boxed{\sf{ \:\rm \: \bigg( \frac{3p}{2} - \frac{2}{3} q \bigg) ^{2}= \:\dfrac{9 {p}^{2} }{4} + \dfrac{ {4q}^{2} }{9} - 2pq \: \: }} \\ \end{gathered}
⟹
(
2
3p
−
3
2
q)
2
=
4
9p
2
+
9
4q
2
−2pq
\rule{190pt}{2pt}
\large\underline{\sf{Solution-2}}
Solution−2
Length of rectangular box = 2x + 1
Breadth of rectangular box = x - 2
Height of rectangular box = 3x
So,
\begin{gathered}\rm \: Volume_{(rectangular\:box)} = length \times breadth \times height \\ \end{gathered}
Volume
(rectangularbox)
=length×breadth×height
\begin{gathered}\rm \: = \:(2x + 1)(x - 2)(3x) \\ \end{gathered}
=(2x+1)(x−2)(3x)
\begin{gathered}\rm \: = \:3x( {2x}^{2} - 4x + x - 2) \\ \end{gathered}
=3x(2x
2
−4x+x−2)
\begin{gathered}\rm \: = \:3x( {2x}^{2} - 3x - 2) \\ \end{gathered}
=3x(2x
2
−3x−2)
\begin{gathered}\rm \: = \: {6x}^{3} - {9x}^{2} - 6x \\ \end{gathered}
=6x
3
−9x
2
−6x
Hence,
\begin{gathered}\boxed{\sf{ \:\rm \:Volume_{(rectangular\:box)} = \: {6x}^{3} - {9x}^{2} - 6x \: \: }}\\ \end{gathered}
Volume
(rectangularbox)
=6x
3
−9x
2
−6x
\rule{190pt}{2pt}
\large\underline{\sf{Solution-3}}
Solution−3
\rm \: {(103)}^{2}(103)
2
\begin{gathered}\rm \: = \: {(100 + 3)}^{2} \\ \end{gathered}
=(100+3)
2
We know,
\begin{gathered}\boxed{\sf{ \:\rm \: {(x + y)}^{2} = {x}^{2} + {y}^{2} + 2xy \: \: }} \\ \end{gathered}
(x+y)
2
=x
2
+y
2
+2xy
So, using this identity, we get
\begin{gathered}\rm \: = \: {(100)}^{2} + {3}^{2} + 2 \times 100 \times 3 \\ \end{gathered}
=(100)
2
+3
2
+2×100×3
\begin{gathered}\rm \: = \:10000 + 9 + 600 \\ \end{gathered}
=10000+9+600
\begin{gathered}\rm \: = \:10609 \\ \end{gathered}
=10609
\rule{190pt}{2pt}
\large\underline{\sf{Solution-4}}
Solution−4
Given that,
\rm \: p + q = 25p+q=25
On squaring both sides, we get
\begin{gathered}\rm \: {(p + q)}^{2} = {25}^{2} \\ \end{gathered}
(p+q)
2
=25
2
\begin{gathered}\rm \: {p}^{2} + {q}^{2} + 2pq \: = \: 625 \\ \end{gathered}
p
2
+q
2
+2pq=625
\begin{gathered}\rm \: 225 + 2pq \: = \: 625 \\ \end{gathered}
225+2pq=625
\begin{gathered}\rm \: 2pq \: = \: 625 - 225 \\ \end{gathered}
2pq=625−225
\begin{gathered}\rm \: 2pq \: = \: 400 \\ \end{gathered}
2pq=400
\begin{gathered}\rm\implies \:pq \: = \: 200 \\ \end{gathered}
⟹pq=200
\rule{190pt}{2pt}
\large\underline{\sf{Solution-5}}
Solution−5
Consider, LHS
\rm \: \bigg( \: \dfrac{4}{3} m \: - \: \dfrac{3}{4} n \: \bigg)^{2} \: + \: 2mn \:(
3
4
m−
4
3
n)
2
+2mn
\begin{gathered}\rm \: = \:{\bigg(\dfrac{4m}{3} \bigg) }^{2} + {\bigg(\dfrac{3n}{4} \bigg) }^{2} - 2 \times \dfrac{4m}{3} \times \dfrac{3n}{4} + 2mn \\ \end{gathered}
=(
3
4m
)
2
+(
4
3n
)
2
−2×
3
4m
×
4
3n
+2mn
\begin{gathered}\rm \: = \:\dfrac{16 {m}^{2} }{9} + \dfrac{9 {n}^{2} }{16} - 2mn + 2mn \\ \end{gathered}
=
9
16m
2
+
16
9n
2
−2mn+2mn
\begin{gathered}\rm \: = \:\dfrac{16 {m}^{2} }{9} + \dfrac{9 {n}^{2} }{16} \\ \end{gathered}
=
9
16m
2
+
16
9n
2
Hence,
\begin{gathered}\boxed{\sf{ \:\rm \: \bigg( \: \frac{4}{3} m \: - \: \frac{3}{4} n \: \bigg)^{2} \: + \: 2mn \:= \:\dfrac{16 {m}^{2} }{9} + \dfrac{9 {n}^{2} }{16} \: \: }} \\ \end{gathered}
(
3
4
m−
4
3
n)
2
+2mn=
9
16m
2
+
16
9n
2