Math, asked by hashimzia118, 4 months ago

1/w +1/w²+1/w³ +...1/w¹⁰⁰​

Answers

Answered by shadowsabers03
8

Given to find,

\longrightarrow S=\dfrac{1}{\omega}+\dfrac{1}{\omega^2}+\dfrac{1}{\omega^3}+\,\dots\,+\dfrac{1}{\omega^{100}}\quad\qaud\dots(1)

where \omega is cube root of unity but \omega\neq1, so that,

\longrightarrow\omega^3=1

\longrightarrow\omega^3-1=0

Since a^3-1=(a-1)(a^2+a+1),

\longrightarrow(\omega-1)(\omega^2+\omega+1)=0

But \omega\neq1. So we get,

\longrightarrow\omega^2+\omega+1=0

Taking \omega^3=1 in (1),

\longrightarrow S=\dfrac{\omega^3}{\omega}+\dfrac{\omega^3}{\omega^2}+\dfrac{\omega^3}{\omega^3}+\,\dots\,+\dfrac{\omega^3}{\omega^{100}}

\longrightarrow S=\omega^2+\omega^1+\omega^0+\,\dots\,+\omega^{-97}

\small\text{$\longrightarrow S=\left(\omega^2+\omega^1+\omega^0\right)+\left(\omega^{-1}+\omega^{-2}+\omega^{-3}\right)+\,\dots\,+\left(\omega^{-94}+\omega^{-95}+\omega^{-96}\right)+\omega^{-97}$}

\longrightarrow S=\left(\omega^2+\omega+1\right)+\omega^{-3}\left(\omega^2+\omega+1\right)+\,\dots\,+\omega^{-96}\left(\omega^2+\omega+1\right)+\omega^{-97}

\small\text{$\longrightarrow S=\left(\omega^2+\omega+1\right)\left(1+\omega^{-3}+\omega^{-6}+\,\dots\,+\omega^{-96}\right)+\omega^{-97}$}

Since \omega^2+\omega+1=0,

\longrightarrow S=\omega^{-97}

\longrightarrow S=\omega^{-99+2}

\longrightarrow S=\omega^{-99}\cdot\omega^2

\longrightarrow S=\left(\omega^3\right)^{-33}\cdot\omega^2

Since \omega^3=1,

\longrightarrow S=\left(1\right)^{-33}\cdot\omega^2

\longrightarrow\underline{\underline{S=\omega^2}}


Saby123: Great
Answered by mathdude500
3

\begin{gathered}\Large{\bold{\pink{\underline{Formula \:  Used \::}}}}  \end{gathered}

 (1). \: \boxed{ \blue{ \bf \: 1 +w  +  {w}^{2}  \:  = 0}}

(2). \:  \boxed{ \blue{ \bf \:  {w}^{3}   = \: 1}}

 \boxed{ \pink{\rm :\implies\:\dfrac{1}{w}  =  {w}^{2}  \:  \:  \: and \:  \: \dfrac{1}{ {w}^{2} }  = w}}

where,

\rm \bullet\:w \: is \: called \: complex \: cube \: roots \: of \: unity.

(3). \:  \boxed{ \blue{ \bf \:  S_n \:  =  \: \dfrac{a(1 -  {r}^{n}) }{1 - r} }}

Wʜᴇʀᴇ,

  • Sₙ is the sum of first n term of GP.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • d is the common ratio.

\large\underline\purple{\bold{Solution :-  }}

\rm :  \implies \:\dfrac{1}{w}  + \dfrac{1}{ {w}^{2} }  + \dfrac{1}{ {w}^{3} }  +  -  -  -  + \dfrac{1}{ {w}^{100} }

  • This represents a GP series with

\rm \bullet\: \: first \: term \: (a) \:  =  \: \dfrac{1}{w}  =  {w}^{2}

\rm \bullet\:common \: ratio \: (r) \:  = \dfrac{1}{ {w}^{2} }  \div \dfrac{1}{w}  = \dfrac{1}{w}  =  {w}^{2}

\rm \bullet\:number \: of \: terms \: (n) = 100

So,

Now,

\rm \implies \:\dfrac{1}{w}  + \dfrac{1}{ {w}^{2} }  + \dfrac{1}{ {w}^{3} }  +  -  -  + \dfrac{1}{ {w}^{100} }  = \dfrac{ {w}^{2} ( {w}^{100} - 1) }{w - 1}

\rm :\implies \:\dfrac{ {w}^{2} ( {w}^{99}  \times w - 1)}{w - 1}

\rm :\implies \:\dfrac{ {w}^{2} ( { {((w}^{3} )}^{33}  \times w - 1)}{w - 1}

\rm :\implies \:\dfrac{ {w}^{2} ( {1}^{33}  \times w - 1)}{w - 1}

\rm :\implies \:\dfrac{ {w}^{2} ( w - 1)}{w - 1}

\rm :\implies\: {w}^{2}

Hence, the value of

 \boxed{ \pink{ \rm :  \implies \:\dfrac{1}{w}  + \dfrac{1}{ {w}^{2} }  + \dfrac{1}{ {w}^{3} }  +  -  -  - + \dfrac{1}{ {w}^{100} }  =  {w}^{2} }}


Saby123: Awesome
Similar questions