(1-w+w^2)^2
Solution
Answers
Question:
Simplify ( 1 - ω + ω² )²; ω is cube root of unity.
Answer:
The simplified form of ( 1 - ω + ω² )² is - ( 4 + 4ω ).
Step-by-step-explanation:
We have given an expression.
We have to simplify the given expression.
The given expression is ( 1 - ω + ω² )².
We know that,
If ω is cube root of unity, ω² + ω + 1 = 0.
∴ ω² + ω = - 1
Now,
( 1 - ω + ω² )² = ( 1 - ω + ω² ) * ( 1 - ω + ω² )
⇒ ( 1 - ω + ω² )² = 1 ( 1 - ω + ω² ) - ω ( 1 - ω + ω² ) + ω² ( 1 - ω + ω² )
⇒ ( 1 - ω + ω² )² = 1 - ω + ω² - ω + ω² - ω³ + ω² - ω³ + ω⁴
⇒ ( 1 - ω + ω² )² = 1 - ω - ω + ω² + ω² + ω² - ω³ - ω³ + ω⁴
⇒ ( 1 - ω + ω² )² = 1 + ω + ω² - ω - ω - ω + 2ω² - 2ω³ + ω⁴
By using 1 + ω + ω² = 0, we get,
⇒ ( 1 - ω + ω² )² = 0 - 3ω + 2ω² - 2ω³ + ω⁴
⇒ ( 1 - ω + ω² )² = ω⁴ - 2ω³ + 2ω² - 3ω
⇒ ( 1 - ω + ω² )² = ω² ( ω² - 2ω + 2 ) - 3ω
⇒ ( 1 - ω + ω² )² = ω² ( ω² + ω + 1 - 3ω + 1 ) - 3ω
By using 1 + ω + ω² = 0, we get,
⇒ ( 1 - ω + ω² )² = ω² ( 0 - 3ω + 1 ) - 3ω
⇒ ( 1 - ω + ω² )² = ω² ( - 3ω + 1 ) - 3ω
⇒ ( 1 - ω + ω² )² = - 3ω³ + ω² - 3ω
By using ω³ = 1, we get,
⇒ ( 1 - ω + ω² )² = - 3 * 1 + ω² + ω - 4ω
⇒ ( 1 - ω + ω² )² = - 3 + ω² + ω - 4ω
By using ω² + ω = - 1, we get,
⇒ ( 1 - ω + ω² )² = - 3 - 1 - 4ω
⇒ ( 1 - ω + ω² )² = - 4 - 4ω
⇒ ( 1 - ω + ω² )² = - ( 4 + 4ω )
∴ The simplified form of ( 1 - ω + ω² )² is - ( 4 + 4ω ).