Math, asked by prshrmpatra, 8 months ago

(1-w+w2)(1-w2+w4)(1-w4+w2)...to 2n factors​

Answers

Answered by pulakmath007
35

SOLUTION

TO DETERMINE

 \sf{(1  - \omega +  {\omega}^{2}) (1  - {\omega }^{2}  +  {\omega}^{4}) (1  - {\omega }^{4}  +  {\omega}^{2})}.....2n \: factors

FORMULA TO BE IMPLEMENTED

 \sf{Since \:  \omega \:  is \:  a  \: cube \:  root  \: of  \: Unity }

So

1. \:  \:  \sf{{\omega}^{3}} = 1

2. \:  \:  \sf{(1 + \omega +  {\omega}^{2}) = 1}

EVALUATION

 \sf{(1  - \omega +  {\omega}^{2}) (1  - {\omega }^{2}  +  {\omega}^{4}) (1  - {\omega }^{4}  +  {\omega}^{2})}.....2n \: factors

 =  \sf{(1  - \omega +  {\omega}^{2}) (1  - {\omega }^{2}  +  {\omega}^{3}. \omega\: ) (1  - {\omega }^{3} .\omega+  {\omega}^{2})}.....2n \: factors

 =  \sf{(1  - \omega +  {\omega}^{2}) (1  - {\omega }^{2}  +  \omega\: ) (1  - \omega+  {\omega}^{2})}.....2n \: factors

 =  \sf{(1   +  {\omega}^{2} - \omega) (1 +  \omega - {\omega }^{2}  \: ) (1+  {\omega}^{2}  - \omega)}.....2n \: factors

 =  \sf{( -2 \omega) ( - 2{\omega }^{2}  \: ) ( - 2 \omega)}.....2n \: factors \:  \: (using \: formula \: 2)

 \sf{  =  {2}^{2n}. {( - 1)}^{2n} . {( \omega)}^{n} . { ({ \omega}^{2} )}^{n}  \: }

 \sf{  =  {2}^{2n}.  { (\omega.{ \omega}^{2} )}^{n}  \: }

 \sf{  =  {2}^{2n}.  { ({ \omega}^{3} )}^{n}  \: }

 \sf{  =  {( {2}^{2}) }^{n}.  {(1)}^{n}   \: }

 \sf{  =  {4 }^{n}}

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

Prove that

z1/z2 whole bar is equal to z1 bar/z2 bar.

Bar here means conjugate

https://brainly.in/question/16314493

Similar questions