1. What is a slope? 2. How do we determine the slope? 3. What are the differences between positive and negative slope? Zero and undefined slopes? 4. How to find the slope of a line? 5. How do we rewrite slope intercept form to standard form or vice versa?
Answers
Answer:
1) In mathematics, the slope or gradient of a line is a number that describes both the direction and the steepness of the line
2) Using two of the points on the line, you can find the slope of the line by finding the rise and the run. The vertical change between two points is called the rise, and the horizontal change is called the run. The slope equals the rise divided by the run: Slope =riserun Slope = rise run .
3) The slope of a line can be positive, negative, zero, or undefined. A horizontal line has slope zero since it does not rise vertically (i.e. y1 − y2 = 0), while a vertical line has undefined slope since it does not run horizontally (i.e. x1 − x2 = 0). because division by zero is an undefined operation.
4) Pick two points on the line and determine their coordinates. Determine the difference in y-coordinates of these two points (rise). Determine the difference in x-coordinates for these two points (run). Divide the difference in y-coordinates by the difference in x-coordinates (rise/run or slope).
5) To convert from slope intercept form y = mx + b to standard form Ax + By + C = 0, let m = A/B, collect all terms on the left side of the equation and multiply by the denominator B to get rid of the fraction.