Math, asked by ezhil5mc, 1 month ago

1. What must be subtracted from the polynomial x^4 - 5x^3 + x^2 + 17x -11 so that it is exactly divisible by (x2 - 3)
plz answer ne plz​

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given polynomial is

\rm :\longmapsto\: {x}^{4} - 5 {x}^{3} +  {x}^{2} + 17x - 11

and

Divisor polynomial is

\rm :\longmapsto\: {x}^{2} - 3

Using Long Division, we have

\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{}}}&{\underline{\sf{\:\: {x}^{2} - 5x  + 4\:\:}}}\\ {\underline{\sf{ {x}^{2}  - 3}}}& {\sf{\:  {x }^{4}  - 5{x}^{3} + {x}^{2} + 17x  - 11 \:\:}} \\{\sf{}}& \underline{\sf{-  {x}^{4}  \:  \:  \:  \:  \:  \ \:  \:  + 3 {x}^{2}  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \: \:\:}} \\ {{\sf{}}}& {\sf{\: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  -  {5x}^{3} + 4{x}^{2}  + 17x - 11  \:  \:  \:  \:   \:  \:  \:  \:\:}} \\{\sf{}}& \underline{\sf{ \:  \: 5{x}^{3} \:  \:  \:  \:  \:  \:  \:  \:   - 15x \:\:}} \\ {\underline{\sf{}}}& {\sf{\:\: \:  \:  \:  \:  \:  \:  \:  \:  {4x}^{2} + 2x  - 11  \:\:}} \\{\sf{}}& \underline{\sf{\: \:  \:  \:  \:  \:  \:  \:  - 4 {x}^{2}  \:  \:  \:  \:  \:  \:  \: + 12\:\:}} \\ {\underline{\sf{}}}& {\sf{\:\: \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  2x \:  +  \: 1\:\:}}  \end{array}\end{gathered}\end{gathered}\end{gathered}

Since, it is to be

\rm :\longmapsto\: {x}^{4} - 5 {x}^{3} +  {x}^{2} + 17x - 11

is exactly divisible by

\rm :\longmapsto\: {x}^{2} - 3

So, that remainder r(x) = 2x + 1 must be subtracted.

Verification :-

Now,

Dividend is

\rm :\longmapsto\: {x}^{4} - 5 {x}^{3} +  {x}^{2} + 15x - 12

and

Divisor is

\rm :\longmapsto\: {x}^{2} - 3

So, using Long Division, we have

\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{}}}&{\underline{\sf{\:\: {x}^{2} - 5x  + 4\:\:}}}\\ {\underline{\sf{ {x}^{2}  - 3}}}& {\sf{\:  {x }^{4}  - 5{x}^{3} + {x}^{2} + 15x  - 12 \:\:}} \\{\sf{}}& \underline{\sf{-  {x}^{4}  \:  \:  \:  \:  \:  \ \:  \:  + 3 {x}^{2}  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \: \:\:}} \\ {{\sf{}}}& {\sf{\: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  -  {5x}^{3} + 4{x}^{2}  + 15x - 12  \:  \:  \:  \:   \:  \:  \:  \:\:}} \\{\sf{}}& \underline{\sf{ \:  \: 5{x}^{3} \:  \:  \:  \:  \:  \:  \:  \:   - 15x \:\:}} \\ {\underline{\sf{}}}& {\sf{\:\: \:  \:  \:  \:  \:  \:  \:  \:  {4x}^{2} \:  \:  \:  \:  \:   - 12  \:\:}} \\{\sf{}}& \underline{\sf{\: \:  \:  \:  \:  \:  \:  \:  - 4 {x}^{2}  \:  \:  \:   \: + 12\:\:}} \\ {\underline{\sf{}}}& {\sf{\:\: \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:0\:\:}}  \end{array}\end{gathered}\end{gathered}\end{gathered}

Hence, Verified

Similar questions