Math, asked by StarTbia, 1 year ago

1. Write the first three terms of the following sequences whose nth terms are given by

Attachments:

Answers

Answered by rohitkumargupta
0
HELLO DEAR,

( 1 ). \bold{a_n = \frac{n(n - 2)}{3}}
where, n = 1 , 2 , 3 ,......
Put n = 1
\bold{a_1 = \frac{1(1 - 2)}{3}}

\bold{a_1 = \frac{-1}{3}}
put n = 2
\bold{a_2 = \frac{2(2 - 2)}{3}}

\bold{a_2 = 0}

Put n = 3,
\bold{a_3 = \frac{3(3 - 2)}{3}}

\bold{a_3 = 1}

( 2 ). \bold{C_n = (-1)^n (3)^{n + 2}}

Put n = 1
\bold{C_1 = (-1)^1(3)^{1 + 2}}

\bold{C_1 = (-1)(27) = -27}

Put n = 2
\bold{C_2 = (-1)^2(3)^{2 + 2}}

\bold{C_2 = (1)(81) = 81}

Put n = 3,
\bold{C_3 = (-1)^3(3)^{3 + 2}}

\bold{C_3 = (-1)(243) = -243}

( 3 ).\bold{Z_n = \frac{(-1)^nn(n + 2)}{4}}

Put n = 1
\bold{Z_1 = \frac{(-1)^1 1(1 + 2)}{4}}

\bold{Z_1 = \frac{(-1)(3)}{4}}

\bold{Z_1 = \frac{-3}{4}}

Put n = 2
\bold{Z_2 = \frac{(-1)^2 2(2 + 2)}{4}}

\bold{Z_2 = \frac{(1)(2)(4)}{4}}

\bold{Z_2 = 2}

Put n = 3
\bold{Z_3 = \frac{(-1)^3 3(3 + 2)}{4}}

\bold{Z_3 = \frac{(-1)(15)}{4}}

\bold{Z_3 = \frac{-15}{4}}

I HOPE ITS HELP YOU DEAR,
THANKS

tiwaavi: Highly attractive , great answer :-)
rohitkumargupta: :-)♥️
Answered by mysticd
0

Solution :


i) an = [n(n-2)]/3


1 ) if n = 1 ,


a1 = [ 1(1-2)]/3


= -1/3


2 ) if n = 2 ,


a2 = [ 2(2-2)]/3 = 0


3) if n = 3 ,


a3 = [ 3(3-2)]/3 = 1


ii ) Cn = (-1)ⁿ 3^n+2 ,


1) if n = 1 ,


C1 = ( -1 )¹ 3^1+2


C1 = - 3³ = -27


2) if n = 2 ,


C2 = ( -1 )² × 3^2+2


c2 = 3⁴ = 81


3) if n = 3,


C3 = ( -1 )³ 3^3+2


= - 3^5 = 243


iii ) zn = [(-1)ⁿ n(n+2)]/4


1 ) if n = 1 ,


z1 = [ (-1)¹ × 1(1+2)]/4


z1 = -3/4 ,


2 ) if n = 2,


z2 = [ (-1)² × 2(2+2)]/4


z2 = 2 ,


3) if n = 3


z3 = [ (-1)³ × 3(3+2)]/4


z3 = -15/4


••••

Similar questions