(1) Write the formula of half perimeter (s) in Heron's formula.
Answers
Step-by-step explanation:
☆ Semi perimeter can be calculated as :-
Perimeter /2 i.e. half of perimeter.
Use in Heron's Formula :-
where s is the semi perimeter and a,b,c are the sides of traingle.
hope it will help you
Answer:
s = a+d+c/2.
Step-by-step explanation:
Heron's formula can also be written as
{\displaystyle A={\frac {1}{4}}{\sqrt {(a+b+c)(-a+b+c)(a-b+c)(a+b-c)}}}A=\frac{1}{4}\sqrt{(a+b+c)(-a+b+c)(a-b+c)(a+b-c)}
{\displaystyle A={\frac {1}{4}}{\sqrt {2(a^{2}b^{2}+a^{2}c^{2}+b^{2}c^{2})-(a^{4}+b^{4}+c^{4})}}}A=\frac{1}{4}\sqrt{2(a^2 b^2+a^2c^2+b^2c^2)-(a^4+b^4+c^4)}
{\displaystyle A={\frac {1}{4}}{\sqrt {(a^{2}+b^{2}+c^{2})^{2}-2(a^{4}+b^{4}+c^{4})}}}A=\frac{1}{4}\sqrt{(a^2+b^2+c^2)^2-2(a^4+b^4+c^4)}
{\displaystyle A={\frac {1}{4}}{\sqrt {4(a^{2}b^{2}+a^{2}c^{2}+b^{2}c^{2})-(a^{2}+b^{2}+c^{2})^{2}}}}{\displaystyle A={\frac {1}{4}}{\sqrt {4(a^{2}b^{2}+a^{2}c^{2}+b^{2}c^{2})-(a^{2}+b^{2}+c^{2})^{2}}}}
{\displaystyle A={\frac {1}{4}}{\sqrt {4a^{2}b^{2}-(a^{2}+b^{2}-c^{2})^{2}}}.}A=\frac{1}{4}\sqrt{4a^2b^2-(a^2+b^2-c^2)^2}.