(1/x+1) +(2/x+2)=(4/x+4) pls koi solve karo brainliest mark karungi
Answers
Answered by
3
Answer:
x=2+2\sqrt{3}\:Or \: x=2-2\sqrt{3}
Step-by-step explanation:
\frac{1}{x+1}+\frac{2}{x+2}=\frac{4}{x+4}
\implies \frac{x+2+2(x+1)}{(x+1)(x+2)}=\frac{4}{x+4}
\implies \frac{x+2+2x+2)}{(x^{2}+3x+2)}=\frac{4}{x+4}
\implies \frac{3x+4}{x^{2}+3x+2}=\frac{4}{x+4}
\implies (3x+4)(x+4)=4(x^{2}+3x+2)
\implies 3x^{2}+12x+4x+16=4x^{2}+12x+8
\implies 3x^{2}+16x+16-4x^{2}-12x-8=0
\implies -x^{2}+4x+8=0
\implies x^{2}-4x-8=0
Compare \: this \: with \\ax^{2}+bx+c=0,we \:get
a=1,b=-4,x=-8
Discreminant (D)=b²-4ac
= (-4)²-4×1×(-8)
= 16+32
= 48
x = \frac{-b±\sqrt{D}}{2a}
=\frac{-(-4)±\sqrt{48}}{2}\\=\frac{4±4\sqrt{3}}{2}\\=2±2\sqrt{3}
\implies x=2+2\sqrt{3}\:Or \: x=2-2\sqrt{3}
Therefore,
x=2+2\sqrt{3}\:Or \: x=2-2\sqrt{3}
Similar questions