Math, asked by ayushbutt9277, 1 year ago

√1-√x/1+√x, x ∈ (0,1),Integrate it with respect to x.

Answers

Answered by sprao534
0

please see the attachment

Attachments:
Answered by babundrachoubay123
0

Answer:

2 - \frac{\pi}{2}

Step-by-step explanation:

In this question

We have been integrate this equation

\int_{0}^{1} [\sqrt\frac{1 - (\rt x)}{1 - (\sqrt x)}]\times dx

\int_{0}^{1} [\sqrt\frac{1 - (\sqrt x)}{1 + \sqrt x)}\times \frac{1 - (\sqrt x)}{1 - (\sqrt x)}]\times dx

x\int_{0}^{1} [\frac{1 - (\sqrt x)}{\sqrt (1 - x)}]\times dx

x\int_{0}^{1} [\frac{1}{\sqrt (1 - x)}]\times dx - x\int_{0}^{1} [\frac{(\sqrt x)}{\sqrt (1 - (x)}]\times dx

\textrm[-2\sqrt(1 - x)]_{0}^{1} - x\int_{0}^{1} [\frac{(\sqrt x)}{\sqrt (1 - (x)}]\times dx

Put x = sin^{2}\Theta

     dx = 2\times sin\Theta\times cos\Theta\times d\Theta

⇒ 2 - x\int_{0}^{\frac{\pi}{2}} [\frac{sin\Theta}{cos\Theta}\times 2\times sin\Theta\times cos\Theta]\times d\Theta

⇒ 2 - x\int_{0}^{\frac{\pi}{2}}2[sin^{2}\Theta]\times d\Theta

⇒ 2 - x\int_{0}^{\frac{\pi}{2}}2[1 - cos2\Theta]\times d\Theta

⇒ 2 - \textrm[\Theta -\frac{sin2\Theta}{2}]_{0}^{\frac{\pi}{2}}

⇒ 2 - \frac{\pi}{2}

Similar questions