Math, asked by rajeshchaubey2409, 1 year ago

(1-x^2)(1-y)dx=xy (1-y)dy.

Answers

Answered by Rajeshkumare
0
\left[x _{1}\right] = \left[ \frac{\frac{\left( 1-y\right) \,y}{2}+\frac{ - \sqrt{\left( 4\,dx^{2} - 8\,dx^{2}\,y+{\left( 1-y\right) }^{2}\,y+4\,dx^{2}\,y^{2}\right) }}{2}}{ - dx+dx\,y}\right][x​1​​]=​⎣​⎢​⎡​​​−dx+dxy​​​2​​(1−y)y​​+​2​​−√​(4dx​2​​−8dx​2​​y+(1−y)​2​​y+4dx​2​​y​2​​)​​​​​​​​⎦​⎥​⎤​​

Algebra functional value . this answer
Answered by brajeshraja
0
Right answer logx -x^2/2=y^2/2+y^4/4-2y^3/3 +constant
Similar questions