(1-x^2)(1-y)dx=xy (1-y)dy.
Answers
Answered by
0
\left[x _{1}\right] = \left[ \frac{\frac{\left( 1-y\right) \,y}{2}+\frac{ - \sqrt{\left( 4\,dx^{2} - 8\,dx^{2}\,y+{\left( 1-y\right) }^{2}\,y+4\,dx^{2}\,y^{2}\right) }}{2}}{ - dx+dx\,y}\right][x1]=⎣⎢⎡−dx+dxy2(1−y)y+2−√(4dx2−8dx2y+(1−y)2y+4dx2y2)⎦⎥⎤
Algebra functional value . this answer
Algebra functional value . this answer
Answered by
0
Right answer logx -x^2/2=y^2/2+y^4/4-2y^3/3 +constant
Similar questions