Math, asked by ashwinibadgujar7382, 1 month ago

(1+x^2)dy/DX + (1-x^2)y = xe^-x(1+x^2). please solve this problem​​

Answers

Answered by ksrivats2005
0

hi this is the answer i think

Attachments:
Answered by ZaraAntisera
1

Answer:

\mathrm{\left(1+x^2\right)\frac{dy}{dx}+\left(1-x^2\right)y=xe^{-x}\left(1+x^2\right):\quad y=\frac{\int \:e^{-2x+2\arctan \left(x\right)}xdx}{e^{2\arctan \left(x\right)-x}}}

Step-by-step explanation:

\mathrm{\left(1+x^2\right)\frac{dy}{dx}+\left(1-x^2\right)y=xe^{-x}\left(1+x^2\right)}

\mathrm{Substitute\:\frac{dy}{dx}}\mathrm{\:with\:}y'\:

\mathrm{\left(1+x^2\right)y'\:+\left(1-x^2\right)y=xe^{-x}\left(1+x^2\right)}

\mathrm{y'\:+\frac{1-x^2}{1+x^2}y=e^{-x}x}

\mathrm{y=\frac{\int \:e^{-2x+2\arctan \left(x\right)}xdx}{e^{2\arctan \left(x\right)-x}}}

Similar questions