Math, asked by nitas1985123, 2 months ago

1/x+3 + 1/x+2 = 2/x+4
SOLVE☝️​

Answers

Answered by Flaunt
19

\sf\huge\bold{\underline{\underline{{Solution}}}}

  \sf   \dfrac{1}{x + 3}  +  \dfrac{1}{x + 2}  =  \dfrac{2}{x + 4}

Taking LCM left side

  \sf \large=  >  \dfrac{(x + 2) + (x + 3)}{(x + 3)(x + 2)}  =  \dfrac{2}{x + 4}

\sf \large=  >  \dfrac{x + 2 + x + 3}{x(x + 2) + 3(x + 2)}  =  \dfrac{2}{x + 4}

\sf \large=  >  \dfrac{2x + 5}{ {x}^{2} + 2x + 3x + 6 }  =  \dfrac{2}{x + 4}

\sf \large=  >  \dfrac{2x + 5}{ {x}^{2}  + 5x + 6}  =  \dfrac{2}{x + 4}

Now,cross multiply to both sides:

\sf \large=  > (2x + 5)(x + 4) = 2 {x}^{2}  + 10x + 12

\sf \large=  > x(2x + 5) + 4(2x + 5) = 2 {x}^{2}  + 10x + 12

\sf \large=  > 2 {x}^{2}  + 5x + 8x + 20 = 2 {x}^{2}  + 10x + 12

We see that 2x² lies on both side so,it gets automatically cancelled:

\sf \large=  >5x + 8x + 20 = 10x + 12

\sf \large=  > 13x + 20 = 10x + 12

\sf \large=  > 13x - 10x = 12 - 20

\sf \large=  > 3x =  - 8

\sf \large=  > x =  -   \bold{\dfrac{8}{3} }

Check:-

\sf \large=  >  \dfrac{1}{x +3 }  +  \dfrac{1}{x + 2}  =  \dfrac{2}{x + 4}

taking LHS

\sf \large=  >  \dfrac{1}{ -  \dfrac{8}{3} + 3 }  +  \dfrac{1}{ \dfrac{ - 8}{3}  + 2}

\sf \large=  >  \dfrac{1}{ \dfrac{ - 8 + 9}{3} }  +  \dfrac{1}{ \dfrac{ - 8 + 6}{3} }

\sf \large=  >  \dfrac{1}{ \dfrac{1}{3} }  +  \dfrac{1}{ \dfrac{ - 2}{3} }

\sf \large=  > 3 -  \dfrac{3}{2}

\sf \large=  >  \dfrac{6 - 3}{2}  =  \dfrac{3}{2}

Now,taking RHS

\sf \large=  >  \dfrac{2}{x + 4}

\sf \large=  >  \dfrac{2}{  \dfrac{ - 8}{3}  + 4}

\sf \large=  >  \dfrac{2}{ \dfrac{ - 8 + 12}{3} }  =  \dfrac{2}{ \dfrac{4}{3} }

\sf \large=  >  \dfrac{6}{4}  =  \dfrac{3}{2}

Hence ,LHS =RHS(verified)

Similar questions