Math, asked by meghakatiyar1, 1 year ago

1. x/a+y/b = a+b

x/a²+y/b² =2

Answers

Answered by Piyush911
0
Given (x/a) + (y/b) = a + b
Multiply by (1/a) both sides, we get
(x/a2) + (y/ab) = 1 + (b/a) → (1)
Given other linear equation as (x/a2) + (y/b2) = 2  → (2)
Subtract (2) from (1), we get
(x/2) + (y/ab) = 1 + (b/a)
(x/a2) + (y/b2) = 2 
----------------------------------
(y/ab) − (y/b2) = (b/a) − 1
⇒ y[(b − a)/ab2] = (b − a)/a
∴ y = b2
Put y = b2 in (x/a2) + (y/b2) = 2 
⇒ (x/a2) + (b2/b2) = 2 
⇒ (x/a2) + 1 = 2 
⇒ (x/a2)  = 1
∴ x = a2

Hope it will help you .....
If you found my answer helpful than pls mark it as brainlist

Answered by Deepsbhargav
13
Hey Sista!!!!!!!


GIVEN :-

 =   \frac{x}{a}  +  \frac{y}{b}  = a + b \:  \:  \:  \: ....(eq _{1}) \\  \\  =  >  \frac{x}{ {a}^{2} }  +  \frac{y}{ {b}^{2} }  = 2 \:  \:  \: ...(eq _{2})
_____________________

Now Eq(1) multiple by "1/a"

 =  >  \frac{x}{ {a}^{2} }   +  \frac{y}{ab}  =  \frac{a + b}{a} ...(eq _{3})
____________________

Now

by [Eq(3)-Eq(2)] we get :-

 =  >   \frac{y}{ab}  -  \frac{y}{ {b}^{2} }  =  \frac{a + b}{a}  - 2 \\  \\  =  > y( \frac{(b - a)}{a {b}^{2} } ) =  \frac{(b - a)}{a}  \\  \\  =  > y =  {b}^{2}  \:  \:  \:  \:
_____________[ANSWER]
__________________

Plug the value of "y" in Eq(1)

 =  >  \frac{x}{a}  +  \frac{ {b}^{2} }{b}  = a + b \\  \\  =  > x =  {a}^{2}
____________[ANSWER]

======================================

Hence the answer is

=> X = a²
=> y = b²

==============



Deepsbhargav: (a+b)/a - 2
Deepsbhargav: ka LCM lo
Deepsbhargav: tb
Deepsbhargav: (a+b-2a) / a
Deepsbhargav: b-a/a
Deepsbhargav: smj aaya
Deepsbhargav: wello Gudiya
Similar questions