Math, asked by KJasleen9914, 1 year ago

(1/x+y/3)3 expand using identity

Answers

Answered by thevamp
2

Hey mate

here is your answer

 =  {( \frac{1}{x}  +  \frac{y}{3} )}^{3}  \\  =  \frac{1}{ {x}^{3} }  +  \frac{ {y}^{3} }{27}  + 3 \times  \frac{1}{x}  \times  \frac{y}{3} ( \frac{1}{x}  +  \frac{y}{3} ) \\  =  \frac{1}{ {x}^{3} }  +  \frac{ {y}^{3} }{27}  +  \frac{x}{y} ( \frac{1}{x} +  \frac{y}{3}  \: ) \\  =  \frac{1}{ {x}^{3} }  +  \frac{ {y}^{3} }{27}  +  \frac{1}{y}  +  \frac{x}{3}

hope it helps u .......

Answered by Salmonpanna2022
1

Step-by-step explanation:

Solution:-

Given expression

 \rm \bigg( \frac{1}{x}  +  \frac{y}{3}  \bigg) ^{3}  \\

∵ (a + b)³ = a³ + b³ + 3ab(a + b)

Where, we have to put in our expression a = 1/x and b = y/3.

   \rm\therefore \:  \bigg( \frac{1}{x}  +  \frac{y}{3}  \bigg)^{3}  \\

  \rm=  \bigg( \frac{1}{x}  \bigg) ^{3}  + \bigg( \frac{y}{3}  \bigg) ^{3}  + 3 \times  \frac{1}{x}  \times  \frac{y}{3}  \bigg( \frac{1}{x}  +  \frac{y}{3}  \bigg)^{3}   \\

  \rm =  \frac{1}{ {x}^{3} }  +  \frac{ {y}^{2} }{27}  +  \frac{y}{x}  \bigg( \frac{1}{x}  +  \frac{y}{3}  \bigg) \\

  \rm=  \frac{1}{ {x}^{3} }  +  \frac{ {y}^{3} }{27}  +  \frac{y}{ {x}^{2} }  +  \frac{ {y}^{2} }{3x}  \\

  \rm=  \frac{1}{ {x}^{3} }  +  \frac{y}{ {x}^{2} }  +  \frac{ {y}^{2} }{3x}  +  \frac{ {y}^{3} }{27} \:  \bf{Ans.}  \\

Used formulae:-

(a + b)³ = x³ + y³ + 3xy(x + y).

I hope it's help you.☺

Similar questions