10.) Find the values of p for which the quadratic equation
![(p + 1)x {}^{2} - 6(p + 1)x + 3(p + 9) = 0 (p + 1)x {}^{2} - 6(p + 1)x + 3(p + 9) = 0](https://tex.z-dn.net/?f=%28p+%2B+1%29x+%7B%7D%5E%7B2%7D++-+6%28p+%2B+1%29x+%2B+3%28p+%2B+9%29+%3D+0)
, p # - 1 has equal roots. Hence, find the roots of the equation.
Answers
Given Equation is (p + 1)x^2 - 6(p + 1)x + 3(p + 9) = 0.
Here, a = (p + 1), b = -6(p + 1), c = 3(p + 9).
Given that the equation has equal roots.
∴ D = b^2 - 4ac = 0
= [-6(p + 1)]^2 - 4(p + 1)(3p + 27) = 0
= 36(p^2 + 1 + 2p) - 4(3p^2 + 27p + 3p + 27) = 0
= 36p^2 + 36 + 72p - 12p^2 - 108p - 12p - 108p = 0
= 36p^2 + 72p + 36 - 12p^2 - 120p - 108 = 0
= 24p^2 - 48p - 72 = 0
= 2p^2 - 4p - 6 = 0
= p^2 - 2p - 3 = 0
= p^2 + p - 3p - 3 = 0
= p(p + 1) - 3(p + 1) = 0
= (p - 3)(p + 1) = 0
= p = 3,-1.
Therefore, the value of p = 3,-1.
Hope it helps!
SOLUTION :
Given : (p + 1)x² - 6(p + 1)x + 3(p + 9) = 0, p ≠ -1 has equal roots ………(1)
On comparing the given equation with ax² + bx + c = 0
Here, a = p + 1 , b = - 6(p +1) , c = 3(p +9)
D(discriminant) = b² – 4ac
D = [- 6(p +1)² - 4 × (p + 1) × 3(p + 9)
D = [36((p)² + 1²+ 2× p× 1)) - 12(p² + 9p + p + 9)
[(a + b)² = a² + b² + 2ab]
D = 36(p² + 1 + 2p - 12(p² + 10p + 9)
D = 36p² + 36 + 72p - 12 p² - 120 p - 108
D = 36p² - 12 p² + 72p - 120p + 36 - 108
D = 24p² - 48p - 72
Given : Equal roots
Therefore , D = 0
24p² - 48p - 72 = 0
24(p² - 2p - 3) = 0
p² - 2p - 3 = 0
p² - 3p + p - 3 = 0
[By middle term splitting]
p(p - 3) + 1 (p - 3) = 0
(p + 1) (p - 3) = 0
p + 1 = 0 or (p - 3) = 0
p = - 1 or p = 3
The value of p is - 1 & 3 .
It is given that p ≠ - 1 , so p = 3
Hence , the value of p is 3 only.
On putting p = 3 in eq 1 ,
(p + 1)x² - 6(p + 1)x + 3(p + 9) = 0
(3 + 1)x² - 6(3 + 1)x + 3(3 + 9) = 0
4x² - 6(4)x + 3(12) = 0
4x² - 24x + 36 = 0
4(x² - 6x + 9) = 0
x² - 6x + 9 = 0
x² - 3x - 3x + 9 = 0
[By middle term splitting]
x(x - 3) -3(x - 3) = 0
(x - 3) = 0 or (x - 3) = 0
x = 3 or x = 3
Roots are 3 & 3
Hence ,the roots of the equation (p + 1)x² - 6(p + 1)x + 3(p + 9) = 0 is 3 .
★★ NATURE OF THE ROOTS
If D = 0 roots are real and equal
If D > 0 roots are real and distinct
If D < 0 No real roots
HOPE THIS ANSWER WILL HELP YOU…