Math, asked by ankup3069, 7 months ago

10. If A(-1, 0), B(5, -2) and C(8, 2) are the vertices of a ∆ABC then its centroid is

a) (12, 0) b) (6, 0) c) (0, 6) d) (4, 0)​

Answers

Answered by rajeshkumarchau
1

Step-by-step explanation:

If (x1,x2) (y1,y2) &(x3,y3) are vertices of a triangle then,

centroide of a triangle is given by the formula,

X = (x1+x2+x3)/3 &Y=(y1+y2+y3)/3

=> X = (-1+5+8)/3=4

& Y =(0-2+2)/3=0

Hence centroid of triangle (X,Y)=(4,0)

Ans. d) (4,0)

I hope,It was useful to you

Answered by Mihir1001
34

 \underline{ \huge\bf\red{QuestiØn} :}

Given :-

A triangle (Δ) ABC which has the following coordinates :

  • A ( - 1 , 0 )

  • B ( 5 , - 2 )

  • C ( 8 , 2 )

Find :-

  • Centroid of ΔABC

 \underline{ \: \huge\bf\green{SolutiØn} \: :}

  • A ( x_1 , y_1) ≡ A ( - 1 , 0 )

  • B ( x_2 , y_2) ≡ B ( 5 , - 2 )

  • C ( x_3 , y_3) ≡ C ( 8 , 2 )

Now, we know that :

 \begin{aligned}& \sf  \qquad centroid \\  \\ &  =  ( \frac{x_1 +  y_1 + z_1}{3} , \frac{x_2 + y_2 + z_2}{3} )  \\  \\ & =  ( \frac{ - 1 + 5 + 8}{3} , \frac{0 - 2 + 2}{3} )  \\  \\ & =  ( \frac{12}{3} , \frac{0}{3} )  \\  \\ & =  ( \frac{ \cancel{12} \ {}^{4} }{ \cancel{3} \ _1 } , 0)  \\  \\ & =  ( 4 \: , 0) \end{aligned}

Hence,

The coordinates the Centroid of the ΔABC is G ( 4 , 0 ) . [ option (d) ]

\red{\rule{5.8cm}{0.02cm}}

\mid \underline{\underline{\LARGE\bf\green{Brainliest \: Answer}}}\mid

Similar questions