Math, asked by MRGurjar, 1 month ago

10) If alpha and beta are the zeroes of the polynomial f(x) = x2 - 4x + k such that alpha-beta = 2, find the value of k​

Answers

Answered by mathdude500
0

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\: \alpha  \: and \:  \beta  \: are \: zeroes \: of \: f(x) =  {x}^{2} - 4x + k

We know,

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

\bf\implies \: \alpha  +  \beta  =  - \dfrac{( - 4)}{1}  = 4

And

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

\bf\implies \: \alpha  \beta  = \dfrac{k}{1}  = k

Now, According to statement

\rm :\longmapsto\: \alpha   - \beta  = 2

Squaring both sides, we get

\rm :\longmapsto\: {( \alpha -   \beta) }^{2}  = 4

\rm :\longmapsto\: {( \alpha  +  \beta) }^{2} - 4  \alpha \beta   = 4

\red{\bigg \{ \because \:  {( x- y)}^{2} =  {(x + y)}^{2}   - 4xy\bigg \}}

\rm :\longmapsto\: {4}^{2}  - 4k = 4

\rm :\longmapsto\: 16  - 4k = 4

\rm :\longmapsto\:   - 4k = 4 - 16

\rm :\longmapsto\:   - 4k =  - 12

\bf\implies \:k = 3

ADDITIONAL INFORMATION :-

\red{\rm :\longmapsto\: \alpha , \beta , \gamma  \: are \: zeroes \: of \: a {x}^{3}  + b {x}^{2} +  cx + d, \: then}

\boxed{ \bf{ \:  \alpha  +  \beta  +  \gamma  =  - \dfrac{b}{a}}}

\boxed{ \bf{ \:  \alpha  \beta  +  \beta  \gamma  +  \gamma  \alpha  =   \dfrac{c}{a}}}

\boxed{ \bf{ \:  \alpha  \beta  \gamma  =  - \dfrac{d}{a}}}

Similar questions