Math, asked by jaishpal15chouhan, 6 months ago

10 If cos A=4/5 then the value of tan A is-
a ) 3/5
b ) 3/4
c ) 4/3
d )5/3​

Answers

Answered by Anonymous
2

Given:-

  • \sf{CosA = \dfrac{4}{5}}

To find:-

  • The value of TanA

Solution:-

\sf{CosA = \dfrac{4}{5} = \dfrac{Base}{Hypotenuse}}

Therefore,

Base = 4 units

Hypotenuse = 5 units.

According to Pythagoras Theorem

\sf{{(Hypotenuse)}^{2} = {(Perpendicular)}^{2} + {(Base)}^{2}}

=> \sf{{(Perpendicular)}^{2} = {(Hypotenuse)}^{2} - {(Base)}^{2}}

=> \sf{Perpendicular = \sqrt{{(Hypotenuse)}^{2} - {(Base)}^{2}}}

=> \sf{Perpendicular = \sqrt{{(5)}^{2} - {(4)}^{2}}}

=> \sf{Perpendicular = \sqrt{25 - 16}}

=> \sf{Perpendicular = \sqrt{9}}

=> \sf{Perpendicular = 3\: units}

Now,

\sf{TanA = \dfrac{Perpendicular}{Base}}

= \sf{TanA = \dfrac{3}{4}}

\sf{The\: value\: of\: TanA\: is \dfrac{3}{4}}

Some important Points:-

  • \sf{SinA = \dfrac{Perpendicular}{Hypotenuse}}

  • \sf{CosA = \dfrac{Base}{Hypotenuse}}

  • \sf{TanA = \dfrac{Perpendicular}{Base}}

  • \sf{CosecA = \dfrac{Hypotenuse}{Perpendicular}}

  • \sf{SecA = \dfrac{Hypotenuse}{Base}}

  • \sf{CotA = \dfrac{Base}{Perpendicular}}
Similar questions