Math, asked by VijayaLaxmiMehra1, 1 year ago

10. If
 \alpha \: , \:  \beta  \: are \: the \: zeroes \: of \: the \:  \\ polynomial \: f(x) = x {}^{2}  - 3x + 6, \\ then \: find \: te \: value \: of \:  \frac{1}{ \alpha }  +  \frac{1}{ \beta }  +  \\  \alpha  {}^{2}  +  \beta  {}^{2}  - 2 \alpha  \beta



Standard:- 10

Content Quality Solution Required

❎ Don't Spamming ❎

Answers

Answered by Robin0071
1
Solution:-

given by:-
f(x) = x {}^{2} - 3x + 6,
\frac{1}{ \alpha } + \frac{1}{ \beta } + \\ \alpha {}^{2} + \beta {}^{2} - 2 \alpha \beta   \\ we \: know \: that \\  \: \alpha + \beta =  \frac{ - b}{a}  =  \\  \frac{3}{1}  = 3 \\ \alpha \beta =  \frac{c}{a}  =  \\  =  \frac{6}{1}  = 6 \\ \frac{1}{ \alpha } + \frac{1}{ \beta } + \\ \alpha {}^{2} + \beta {}^{2} - 2 \alpha \beta  \\  \frac{\alpha +\beta }{\alpha \beta}  +  {(\alpha +\beta)}^{2}  - 4\alpha \beta \\  \frac{3}{6}  +  {3}^{2}  - 4 \times 6 \\  \frac{1}{2}  + 9 - 24 \\  \frac{1 + 18 - 48}{2}  \\  \frac{29}{2} ans
■I HOPE ITS HELP■

Robin0071: i know
Robin0071: - is missed
Robin0071: yes
Answered by graxx
6
Hi there

Hope this will help you

Thank You
Attachments:

VijayaLaxmiMehra1: no problem
VijayaLaxmiMehra1: Thanks
Similar questions