10. If the polynomial x^4-6x^3+16x^2-25x+10 is divided by another polynomial x^2-2x+k, the remainder comes out to be x+a, find k and a.
Answers
Answered by
15
Heya !!
A very sweet morning dear ,
here is your answer :))
________________________
We know that,
Dividend = Divisor × Quotient + Remainder
⇒ Dividend – Remainder = Divisor × Quotient
⇒ Dividend – Remainder is always divisible by the divisor.
Now, it is given that f(x) when divided by x2 – 2x + k leaves (x + a) as remainder.
=> (now refer attachment )
So, for f(x) to be completely divisible by x2 – 2x + k, remainder must be equal to zero
⇒ (–10 + 2k)x + (10 – a – 8k + k2) = 0
⇒ –10 + 2k = 0 and 10 – a – 8k + k2 = 0
⇒ k = 5 and 10 – a – 8 (5) + 52 = 0
⇒ k = 5 and – a – 5 = 0
⇒ k = 5 and a = –5
________________________
Hope it helps u dear :))
CHEERS !!!
# Nikky
A very sweet morning dear ,
here is your answer :))
________________________
We know that,
Dividend = Divisor × Quotient + Remainder
⇒ Dividend – Remainder = Divisor × Quotient
⇒ Dividend – Remainder is always divisible by the divisor.
Now, it is given that f(x) when divided by x2 – 2x + k leaves (x + a) as remainder.
=> (now refer attachment )
So, for f(x) to be completely divisible by x2 – 2x + k, remainder must be equal to zero
⇒ (–10 + 2k)x + (10 – a – 8k + k2) = 0
⇒ –10 + 2k = 0 and 10 – a – 8k + k2 = 0
⇒ k = 5 and 10 – a – 8 (5) + 52 = 0
⇒ k = 5 and – a – 5 = 0
⇒ k = 5 and a = –5
________________________
Hope it helps u dear :))
CHEERS !!!
# Nikky
Attachments:
VijayaLaxmiMehra1:
there is -25x not - 26x
Answered by
10
Given Equation is f(x) = x^4 - 6x^3 + 16x^2 - 25x + 10.
Given Equation is g(x) = x^2 - 2x + k.
Now,
Divide f(x) by g(x), we get
x^2 - 4x + 8 - k
---------------------------------------------------
x^2 - 2x + k) x^4 - 6x^3 + 16x^2 - 25x + 10
x^4 - 2x^3 + kx^2
----------------------------------------------------
-4x^3 + 16x^2 - kx^2 - 25x + 10
- 4x^3 + 8x^2 - - 4kx
-----------------------------------------------------
8x^2 - kx^2 - 25x + 4kx + 10
8x^2 - 16x + + 8k
------------------------------------------------------------
-kx^2 - 9x + 4kx + 10 - 8k
-kx^2 + 2kx - k^2
-------------------------------------------------------------------
-9x + 2kx + 10 - 8k + k^2.
--------------------------------------------------------------------------
Given that remainder is x + a.
= > -9x + 2kx + 10 - 8k + k^2 = x + a
= > (2k - 9)x + k^2 - 8k + 10 = x + a
= > 2k - 9 = 1
= > 2k = 10
= > k = 5.
(ii)
k^2 - 8k + 10 = a
= > (5)^2- 8(5) + 10 = a
= > 25 - 40 + 10 = a
= > -5 = a.
Therefore the value of k = 5 and a = -5.
Hope this helps!
Given Equation is g(x) = x^2 - 2x + k.
Now,
Divide f(x) by g(x), we get
x^2 - 4x + 8 - k
---------------------------------------------------
x^2 - 2x + k) x^4 - 6x^3 + 16x^2 - 25x + 10
x^4 - 2x^3 + kx^2
----------------------------------------------------
-4x^3 + 16x^2 - kx^2 - 25x + 10
- 4x^3 + 8x^2 - - 4kx
-----------------------------------------------------
8x^2 - kx^2 - 25x + 4kx + 10
8x^2 - 16x + + 8k
------------------------------------------------------------
-kx^2 - 9x + 4kx + 10 - 8k
-kx^2 + 2kx - k^2
-------------------------------------------------------------------
-9x + 2kx + 10 - 8k + k^2.
--------------------------------------------------------------------------
Given that remainder is x + a.
= > -9x + 2kx + 10 - 8k + k^2 = x + a
= > (2k - 9)x + k^2 - 8k + 10 = x + a
= > 2k - 9 = 1
= > 2k = 10
= > k = 5.
(ii)
k^2 - 8k + 10 = a
= > (5)^2- 8(5) + 10 = a
= > 25 - 40 + 10 = a
= > -5 = a.
Therefore the value of k = 5 and a = -5.
Hope this helps!
Similar questions