Math, asked by VijayaLaxmiMehra1, 1 year ago

10. If the polynomial x^4-6x^3+16x^2-25x+10 is divided by another polynomial x^2-2x+k, the remainder comes out to be x+a, find k and a.

Answers

Answered by nikky28
15
Heya !!

A very sweet morning dear ,

here is your answer :))

________________________


We know that,

Dividend = Divisor × Quotient + Remainder

⇒ Dividend – Remainder  =  Divisor × Quotient

⇒ Dividend – Remainder is always divisible by the divisor.

Now, it is given that  f(x)  when divided by  x2 – 2x + k  leaves (x + a) as remainder.


=> (now refer attachment )


So,  for  f(x) to be completely divisible by  x2 – 2x + k,  remainder must be equal to zero

⇒  (–10 + 2k)x + (10 – a – 8k + k2) = 0

⇒  –10 + 2k = 0  and  10 – a – 8k + k2 =  0

⇒  k = 5  and  10 – a – 8 (5) + 52 = 0

⇒  k = 5  and   – a – 5 = 0

⇒  k = 5  and   a  =  –5


________________________

Hope it helps u dear :))

CHEERS !!!

# Nikky


Attachments:

VijayaLaxmiMehra1: there is -25x not - 26x
VijayaLaxmiMehra1: in dividend u write - 26x but in ques there is -25x
VijayaLaxmiMehra1: +10-a but in ques there is not -a
Answered by siddhartharao77
10
Given Equation is f(x) = x^4 - 6x^3 + 16x^2 - 25x + 10.

Given Equation is g(x) = x^2 - 2x + k.

Now,

Divide f(x) by g(x), we get


                            x^2 - 4x + 8 - k
                           ---------------------------------------------------
x^2  -  2x  +  k)   x^4   -   6x^3   +  16x^2   -  25x  +  10

                            x^4  -   2x^3   +   kx^2 

                            ----------------------------------------------------
 
                                   -4x^3  + 16x^2 - kx^2  - 25x + 10

                                   - 4x^3  + 8x^2 -          - 4kx

                            -----------------------------------------------------
 
                                               8x^2 -  kx^2 -  25x + 4kx + 10

                                               8x^2             -  16x   +        + 8k

                              ------------------------------------------------------------

                                                           -kx^2  -  9x +  4kx  +  10 - 8k

                                                           -kx^2           +  2kx           - k^2

                                -------------------------------------------------------------------

                                                                         -9x +  2kx +  10 - 8k + k^2.

                                  --------------------------------------------------------------------------
                                                  
Given that remainder is x + a.
                           
= > -9x + 2kx + 10 - 8k + k^2 = x + a

= > (2k - 9)x + k^2 - 8k + 10 = x + a

= > 2k - 9 = 1

= > 2k = 10

= > k = 5.



(ii)

k^2 - 8k + 10 =  a

= > (5)^2- 8(5) + 10 = a

= > 25 - 40 + 10 = a

= > -5 = a.




Therefore the value of k = 5 and a = -5.


Hope this helps!
Similar questions