Math, asked by piyushraj2076, 4 months ago

10. Length of a rectangle is 3cm more than twice its breadth. Find the dimensions
of the rectangle if its perimeter is 78cm.

Answers

Answered by shaktisrivastava1234
17

  \huge\fbox{Answer}

  \large  \underline{\underline{ \frak {\color{red}Given::}}}

 \rightarrow \sf{Breadth  \: of  \: rectangle={ \rm{x}}  \: cm}

{ \rightarrow \sf{Length \:  of  \: rectangle={ \rm{2x+3}} cm}}

 \rightarrow \sf{Perimeter  \: of  \: rectangle=78cm}

  \large  \underline{\underline{ \frak {\color{blue}To  \: find::}}}

 \sf \leadsto{Length  \: and  \: Breadth  \: of  \: the \:  rectangle.}

  \large  \underline{\underline{ \frak {\color{gold}Formula  \: required::}}}

{ \small{ \star}} \fbox{\rm{Perimeter  \: of  \: rectangle=2(length + breadth)}} { \small{\star}}

  \large  \underline{\underline{ \frak {\color{peru}According \:  to  \: Question::}}}

{\implies{\sf{Perimeter  \: of  \: rectangle=2(length + breadth)}}}

{\implies{\sf{{78cm =2 (2x + 3 + x)}}}}

{\implies{\sf{{ \frac{78}{2} cm =  2x + 3 + x}}}}

{\implies{\sf{{ 39cm =  3x + 3 }}}}

{\implies{\sf{{ 39cm - 3 =  3x  }}}}

{\implies{\sf{{ 36cm  =  3x  }}}}

{\implies{\sf{{ x \: cm =  \frac{36}{3} }}}}

{\implies{\sf{{ x \: cm ={  \cancel{  \frac{36}{3}}}  = 12cm}}}}

  \large  \underline{\underline{ \frak {\color{p}Hence,}}}

 {\implies \sf{Breadth  \: of  \: rectangle={ \rm{x}}  \: cm} = 12cm}

{ \implies \sf{Length \:  of  \: rectangle={ \rm{2x+3} } cm} = 2 \times 12cm + 3 = 27cm}

  \large  \underline{\underline{ \frak {\color{cyan}Verification::}}}

{\mapsto{\sf{Perimeter  \: of  \: rectangle=2(length + breadth)}}}

{\mapsto{\sf{78cm=2(27cm + 12cm)}}}

{\mapsto{\sf{78cm=2 \times 39cm}}}

{\mapsto{\sf{78cm=78cm}}}

{\mapsto{\sf{L.H.S.=R.H.S.}}}

  \large  \underline{\underline{ \frak {\color{green}Formula  \: related  \: to  \: rectangle::}}}

 {\mid {\boxed{ \begin{array}{ c  | c  } \hline  \sf Perimeter_{(rectangle)}&   \sf 2(length + breadth) \\  \hline \sf Area_{(rectangle)} &  \sf length \times breadth \\  \hline \sf Diagonal_{(rectangle)}& \sf  \sqrt{ {length}^{2} +  {breadth}^{2}  } \\  \end{array}}} \mid}

___________________________________________________

Attachments:
Similar questions