Physics, asked by raghavachaitanya590, 11 months ago

10
Particles of masses m, 2m, 3m ........... nm grams are placed on the same line at distances, I, 21, 31, ...... nl cm from a fixed point. The distance of centre of
mass of the particles from the fixed point in centimeters in
n(n' + )
и 41
(2n+1)/
ооо
n(n' +)/​

Answers

Answered by shadowsabers03
4

\displaystyle\Large\boxed {\sf {\quad l\cdot\dfrac {2n+1}{3}\quad}}

We have the formula to find the center of mass of the system,

\displaystyle\longrightarrow\sf{\bar x=\dfrac{\displaystyle\sf{\sum_{i=1}^nm_ix_i}}{\displaystyle\sf{\sum_{i=1}^nm_i}}}

Here,

  • \displaystyle\sf {m_i=im} where \displaystyle\sf {i=1,\ 2,\ 3,\,\dots\,\ n}

  • \displaystyle\sf {x_i=il} where \displaystyle\sf {i=1,\ 2,\ 3,\,\dots\,\ n}

Hence the position of the center of mass from the fixed point is,

\displaystyle\longrightarrow\sf{\bar x=\dfrac {\displaystyle\sf{\sum_{i=1}^nim\cdot il}}{\displaystyle\sf{\sum_{i=1}^nim}}}

\displaystyle\longrightarrow\sf{\bar x=\dfrac {\displaystyle\sf{\sum_{i=1}^ni^2ml}}{\displaystyle\sf{\sum_{i=1}^nim}}}

\displaystyle\longrightarrow\sf{\bar x=\dfrac {ml\displaystyle\sf{\sum_{i=1}^ni^2}}{m\displaystyle\sf{\sum_{i=1}^ni}}}

\displaystyle\longrightarrow\sf{\bar x=l\cdot\dfrac {\displaystyle\sf{\sum_{i=1}^ni^2}}{\displaystyle\sf{\sum_{i=1}^ni}}}

\displaystyle\longrightarrow\sf{\bar x=l\cdot\dfrac {\left (\dfrac {n(n+1)(2n+1)}{6}\right)}{\left (\dfrac {n(n+1)}{2}\right)}}

\displaystyle\longrightarrow\sf{\underline {\underline{\bar x=l\cdot\dfrac {2n+1}{3}}}}

Or by direct application,

\displaystyle\longrightarrow\sf{\bar x=\dfrac {ml+(2m)(2l)+(3m)(3l)+\,\dots\,+(nm)(nl)}{m+2m+3m+\,\dots\,+nm}}

\displaystyle\longrightarrow\sf{\bar x=\dfrac {ml+4ml+9ml+\,\dots\,+n^2ml}{m+2m+3m+\,\dots\,+nm}}

\displaystyle\longrightarrow\sf{\bar x=\dfrac {ml\left(1+4+9+\,\dots\,+n^2\right)}{m(1+2+3+\,\dots\,+n)}}

\displaystyle\longrightarrow\sf{\bar x=l\cdot\dfrac {1^2+2^2+3^2+\,\dots\,+n^2}{1+2+3+\,\dots\,+n}}

\displaystyle\longrightarrow\sf{\bar x=l\cdot\dfrac {\left (\dfrac {n(n+1)(2n+1)}{6}\right)}{\left (\dfrac {n(n+1)}{2}\right)}}

\displaystyle\longrightarrow\sf{\underline {\underline{\bar x=l\cdot\dfrac {2n+1}{3}}}}

Similar questions