Math, asked by Ruchika08, 1 year ago

10 points...

Please solve this question...

Appropriate answer will be marked as brainliest...

If cos^-1(y/b)=log(x/n)^n ,then find the innate differentiation...

Answers

Answered by Shubhendu8898
1

Given,

\cos^{-1}(\frac{y}{b})=\log(\frac{x}{n})^{n}\\\;\\\cos^{-1}(\frac{y}{b})=n\log\frac{x}{n}\\\;\\\cos^{-1}(\frac{y}{b})=n(\log x-\log n)\\\;\\\text{diff. both sides w.r.t. x}\\\;\\(\frac{1}{\sqrt{1-\frac{y^{2}}{b^{2}}}}).\frac{1}{b}\frac{dy}{dx}=n(\frac{1}{x}-0})\\\;\\(\frac{b}{\sqrt{b^{2}-y^{2}}}).\frac{1}{b}.\frac{dy}{dx}=\frac{n}{x}\\\;\\\frac{1}{\sqrt{b^{2}-y^{2}}}.\frac{dy}{dx}=\frac{n}{x}\\\;\\\frac{dy}{dx}=\frac{n\sqrt{b^{2}-y^{2}}}{x}

Answered by pallu723
1

(✿ ♥‿♥)。・:*:・(✿◕3◕)❤(♥ω♥*)(✿ ♥‿♥)。・:*:・(✿◕3◕)❤♡´・ᴗ・`♡。・:*:・(✿◕3◕)❤(♥ω♥*)(∿°○°)∿ ︵ ǝʌol。・:*:・(✿◕3◕)❤

Attachments:
Similar questions