CBSE BOARD XII, asked by dhirajshinde365, 3 months ago

10. Prove that

cotA

1−tanA

+

tanA

1−co tA

= 1+ tanA + cotA = secA . cosecA

+ 1​

Answers

Answered by baranishanmu
1

Explanation:

Tan a/(1-cot a) +cot a/(1-tan a)

=(sin a/,cos a) /(1-cos a/sin a) + (cos a/sin a) /(1-sin a/cos a)

=sin ^2 a/cosa(sina - cosa) +cos^2 a/sina (cosa-sina)

=sin^2a/cosa(sina-cosa) - cos^2a/sina (sina-cosa)

=(sin^3a-cos^3a)/sina.cosa(sina-cosa)

=(sina-cosa)(sin^2a+cos^2a+sinacosa)/sina.cosa(sina-cosa)

=(1+sinacosa)/sina.cosa

=(1/sinacosa)+1

=1+seca.coseca

Answered by rrai92244
0

Answer:

here is your answer

Explanation:

PLEASE MARK ME AS BRAINLIST

Attachments:
Similar questions