10) Verify associativity property for multiplication of integers:
a) a= -5, b= 9, c=5
b) a= -13, b=9, c=3
c) a= 12, b=-4, c=2
d) a=0, b=-2, c=3
Answers
Answered by
10
a) a x (b x c) = (a x b) x c
= (-5) x (9 x 5) = (-5 x 9) x 5
= (-5) x 45 = (-45) x 5
= (-225) = (-225)
Hence verified
b) (-13) x (9 x 3) = (-13 x 9) x 3
= (-13) x 27 = (-117) x 3
= (-351) = (-351)
Hence verified
c) 12 x (-4 x 2) = (12 x -4) x 2
= 12 x (-8) = (-48) x 2
= (-96) = (-96)
Hence verified
d) 0 x (-2 x 3) = (0 x -2) x 3
= 0 x (-6) = (0) x 3
= 0 = 0
Hence verified
= (-5) x (9 x 5) = (-5 x 9) x 5
= (-5) x 45 = (-45) x 5
= (-225) = (-225)
Hence verified
b) (-13) x (9 x 3) = (-13 x 9) x 3
= (-13) x 27 = (-117) x 3
= (-351) = (-351)
Hence verified
c) 12 x (-4 x 2) = (12 x -4) x 2
= 12 x (-8) = (-48) x 2
= (-96) = (-96)
Hence verified
d) 0 x (-2 x 3) = (0 x -2) x 3
= 0 x (-6) = (0) x 3
= 0 = 0
Hence verified
Answered by
0
Answer:
Step-by-step explanation:
Associative property for multiplication of integers is given by
a×(b×c) = (a×b)×c, for any three integers a,b, and c
a) a= -5, b= 9, c=5
(b×c) = (9×5) = 45
a×(b×c) = -5×45 = -225
(a×b) = -5×9 = -45
(a×b)×c = -45 ×5 = -225
Hence a×(b×c) = (a×b)×c is verified
b) a= -13, b= 9, c=3
(b×c) = (9×3) = 27
a×(b×c) = -13×27 = -351
(a×b) = -13×9 = -117
(a×b)×c = -117 ×3 = -351
Hence a×(b×c) = (a×b)×c is verified
c) a= 12, b= -4, c=2
(b×c) = (-4×2) = -8
a×(b×c) = 12×-8 = -96
(a×b) = 12×-4 = -48
(a×b)×c = -48 ×2 = -96
Hence a×(b×c) = (a×b)×c is verified
d) a= 0, b= -2, c=3
(b×c) = (-2×3) = -6
a×(b×c) = 0×-6 = 0
(a×b) = 0×-2 = 0
(a×b)×c = 0 ×3 = 0
Hence a×(b×c) = (a×b)×c is verified
#SPJ2
Similar questions