Math, asked by lioshield, 1 year ago

10/x+y + 2/x-y =4 ,15/x+y - 5/x-y= -2 by special elimination metgod

Answers

Answered by hukam0685
8

let \:  \frac{1}{x + y}  = a \\  \frac{1}{x - y}  = b \\ place \: these \: assumptions \: in  \\ \:  \: main \: equation \\ 10a + 2b = 4 \\ 15a - 5b =  - 2 \\ multiply \: eq1 \: by \: 5 \: and \: 2 \: by \: 2 \\ 50a + 10b = 20 \\ 30a - 10b =  - 4 \\ add \: both \: equation \\ 80a = 16 \\ a =  \frac{16}{80}  =  \frac{1}{5}  \\ 10 \times  \frac{1}{5}  + 2b = 4 \\ 2b = 4 - 2 = 2 \\ b = 1 \\ now \: put \: the \: values \: of \: a \: and \: b \\  \frac{1}{x + y}  =  \frac{1}{5}  \\  \frac{1}{x - y}  = 1 \\ on \: cross \: multiplying \: both \: we \: get \\ x + y = 5 \\ x - y = 1 \\  \: add \: both \: equations \\ 2x = 6 \\ x =  \frac{6}{2}  = 3 \\ 3 + y = 5 \\ y = 5 - 3 = 2 \\ so \: x = 3 \:  \:  \: y = 2 \: is \: the \: solution \: of \: these \: equations



Similar questions