Math, asked by GrimReaper8109, 11 months ago

10 years ago, the ages of A and B were in the ratio of 13:17.17 years from now the ratio of their age will be 10:11 what is the age of B at present?

Answers

Answered by vrmhase8148
0

Answer:I don't know

Step-by-step explanation:

Answered by Alcaa
1

Present age of B is 27 years .

Step-by-step explanation:

Let the present age of A be x years

and present age of B be y years.

  • First condition states that 10 years ago, the ages of A and B were in the ratio of 13 : 17, i.e.;

                       \frac{x-10}{y-10} = \frac{13}{17}

                      17(x-10) = 13(y-10)

                      17x - 170 = 13y - 130

                      17x = 13y + 40

                        x = \frac{13y+40}{17}  ---------- [Equation 1]

  • Second condition states that 17 years from now the ratio of their age will be 10 : 11, i.e.;

                         \frac{x+17}{y+17} = \frac{10}{11}

                      11(x+17) = 10(y+17)

                      11x + 187= 10y +170

                      11x = 10y - 17

                      x = \frac{10y - 17}{11}

Now putting value of x from equation 1 into above equation, we get;

                     \frac{13y+40}{17} = \frac{10y - 17}{11}

                    11(13y + 40) = 17(10y - 17)

                     143y + 440 = 170y - 289

                     170y-143y = 440 + 289

                              27y = 729

                                y = \frac{729}{27} = 27

Therefore, present age of B is 27 years.

Similar questions