Math, asked by yashpal342, 1 year ago

100-100 divided by 100-100 is equal to

Answers

Answered by alinakincsem
8

Answer:

The correct answer is 2

Step-by-step explanation:

STEP 1: Lets take a look at the statement

We have two basic equations, i.e.   (100–100)  /   (100–100)

Suppose that we can write 100 as 10^2.

STEP 2:  If  100 = 10^2

Then,

(100-100)= (10^2 - 10^2) in the numerator.

STEP 3:

In the denominator, we can write               100–100 = 10 X (10–10).

STEP 4:

(100–100)/(100–100)      =     (10^2 – 10^2)/ [10 X (10–10)]

STEP 5:

Look into the identities of expansion and factorisation in algebra.

Since,

a^2 - b^2 can also be written as (a+b)  X   (a-b)

Then,

(10^2 - 10^2)/[10 X (10–10)]    =     [(10+10) X (10–10)] / [10 X (10–10)].

Cancelling 10–10 in the numerator and denominator.We should not simplify it to 0/0.

LAST STEP:

[(10+10)*(10–10)] / [10*(10–10)]

= (10+10)/10

= 20/10

= 2.

Answered by яσѕнαη
3

\mathfrak{dear\;user  }

\mathfrak{question-}prove 100-100/100-100=2 ​

\mathfrak{here\:is\:the\:solution\:for \:the question  }

a^{2}-b^{2} =(a+b)(a-b)

= (100-100)\div  (100-100)=2

L.H.S

=(10^{2} -10^{2})\div10(10-10)

=(10+10)(10-10)\div10(10-10) cancel(10-10)from \:numerator \:and \:denominatior.

=10+10\div10

=20 \div 10

=2

R.H.S=2

\mathcal{MY\:EXPECTATION\: FOR \:THIS \: ANSWER \:IS  }10\:thanks\:and \:brainlist

\mathcal{BY \:ROSHAN\: A \:USER \: OF \: BRAINLY}

                                                                                    ʙʀᴀɪɴʟʏ  ʀᴏsʜᴀɴ

Similar questions