100^2-99^2+98^2-97^2_ _ _ _ _ _+2^2-1^2. ➡️ ➡️ ➡️ ➡️ please don't spam
Answers
Answered by
12
⭐Solution⭐
➡given series
100²-99²+98²-97²+96²-95² + ...........+4²-3²+2²-1²
We know,
(x²-y²)=(x+y)(x-y).
so, can be write series
(100²-99²)+(98²-97²)+(96²-95²)+............+(4²-3²)+(2²-1²)
=>(100+99)(100-99)+(98+97)(98-97)+(96-95)(96+95)+..............(4+3)(4-3)+(2-1)(2+1)
=>(100+99)(1)+(98+97)(1)+......(4+3)(1)+(2+1)(1)
=>100+99+98+97+......+3+2+1
or,
=>1+2+3+........+98+99+100
This became an AP series ..where first term a =1, common difference d = 1.
✔Apply the formula to find sum of term of an AP
Sum= n/2[ 2a+(n-1)×d]
Sum = 100/2[ 2×1+(100-1)×1]
= 50[2+(99)]
= 50×101
= 5050
⏩Thus:-
Sum of given series will be
= 5050.
➡Hopes its help's u
⏩Please Marks Brainliest .
Similar questions