Math, asked by mayankkumar9b, 1 year ago

100 Point Maths Question
FACTORISE 44,45​

Attachments:

Answers

Answered by Anonymous
15

Heya!

Here is ur answer.....

44. 2x² -x +1/8 = 0

Answer :

2 {x}^{2}  - x +  \frac{1}{8}  = 0 \\  \\  \frac{ 16{x}^{2} -8x  + 1 }{8}  = 0 \\  \\ 16 {x}^{2}  - 8x + 1 = 0 \\  \\ 16 { x}^{2}  - 4x - 4x + 1 = 0 \\  \\ 4x(4x - 1) - 1(4x - 1) = 0 \\  \\ (4x - 1)(4x - 1) = 0 \\  \\  \\ x =  \frac{1}{4}

__________________________________

45. 4√3x² +5x -2√3 = 0

Answer:

4 \sqrt{3}  {x}^{2}  + 5x - 2  \sqrt{3}  = 0 \\  \\ 4 \sqrt{3}{x}^{2}  + 8x - 3x - 2 \sqrt{3}  = 0 \\  \\ 4x( \sqrt{3}x + 2) -  \sqrt{3}( \sqrt{3} x + 2) = 0 \\  \\ ( \sqrt{3}x + 2)(4x -  \sqrt{3} ) = 0 \\  \\  \\ x =   \frac{4}{3} \:  \:  \:  or \: x =  \frac{ \sqrt{3} }{4}

Hope it helps

Answered by muskanc918
22

\huge{\bold{\sf{\underline{\underline{Answer:-}}}}}

\large{\rm{\underline{\star{Solution\:no. - 44}}}}

\large\sf{\implies   2 {x}^{2}  - x +  \frac{1}{8}  = 0  }

\large\sf{ \implies   \frac{16 {x}^{2}  - 8x + 1}{8}  = 0 }

\large\sf{  \implies 16 {x}^{2}  - 8x + 1 = 0}

\large\sf{\implies 16 {x}^{2}  - 4x - 4x + 1 = 0   }

\large\sf{ \implies  4x(4x - 1) - 1(4x - 1) = 0 }

\large\sf{ \implies   (4x - 1)(4x - 1)=0  }

\large\sf{\implies  ( 4x - 1) = 0 \:  \:  \:    \: or \:  \:  \:  \: (4x - 1) = 0   }

\large\sf{\implies     x =  \frac{1}{4}  \:  \: or \:  \: x =  \frac{1}{4}  }

\large\sf{\boxed{     x =  \frac{1}{4}     }}

__________________________________________

\large{\rm{\underline{\star{Solution\:no. - 45}}}}

\large\sf{ \implies      4 \sqrt{3}  {x}^{2}  + 5x - 2 \sqrt{3}  = 0    }

\large\sf{ \implies    4  \sqrt{3} {x}^{2} + 8x - 3x - 2 \sqrt{3}  = 0   }

\large\sf{  \implies   4x( \sqrt{3} x + 2) -  \sqrt{3} ( \sqrt{3} x + 2) = 0   }

\large\sf{   \implies     (4x -  \sqrt{3} )( \sqrt{3} x  + 2) = 0   }

\large\sf{ \implies   (4x -  \sqrt{3} ) = 0 \:  \: or \:  \: ( \sqrt{3} x  + 2) = 0   }

\large\sf{\implies   x  =  \frac{ \sqrt{3} }{4}  \:  \: or \:  \:  x =   - \frac{  2}{ \sqrt{3} }     }

\large\sf{\boxed{     x  =  \frac{ \sqrt{3} }{4}  \:  \: or \:  \:     - \frac{  2}{ \sqrt{3} }         }}


farzam26: I love you
Similar questions