100 points question Balancethefollowing equatican step by step: H₂SO4 + 2Pb (OH)4 - Pb(S04)2 + H2O
Answers
Answer:
This equation can be balanced as:
4H2SO4+ 2 Pb(OH) 4--------------> 2 Pb (SO4) 2+8H2O
....
.
.
.
.
Stay safe
Answer:
Given:
Concentration of OH- is decreased up to 1/4 time
━━━━━━━━━━━━━━
Need to find:
Change in concentration of Fe3+
━━━━━━━━━━━━━━
Answer:
》We know, Fe(OH)3 is a solid.
thus [Fe(OH)3] =1
━━━━━━━━━━━━━━
Stoichiometric coeff of:
Fe =1
OH= 3
━━━━━━━━━━━━━━
let concentration be Fe initially
be : Fe1
and finally be Fe2
now,
Kc = \dfrac{{concentration \: of \: product}^{coeff} }{{concentration \: of \: product}^{coeff} }Kc=
concentrationofproduct
coeff
concentrationofproduct
coeff
\implies \: Kc1 = {[Fe1]\: ({OH})^{3} }⟹Kc1=[Fe1](OH)
3
━━━━━━━━━━━━━━
and
Kc2 = {[Fe2] \times ({\dfrac{1}{4}[ OH]})^{3} }Kc2=[Fe2]×(
4
1
[OH])
3
now
━━━━━━━━━━━━━━
Kc of a reversible reaction can't be different for same reaction at same temperature,
thus
\begin{gathered}Kc1 = Kc2 \\ \implies \: [Fe1] {[OH]}^{3} =[ Fe2] \dfrac{ {[OH]}^{3} }{64}\end{gathered}
Kc1=Kc2
⟹[Fe1][OH]
3
=[Fe2]
64
[OH]
3
\red{\bold{\boxed{\large{ \implies \: [Fe2] = 64[Fe1]}}}}
⟹[Fe2]=64[Fe1]
━━━━━━━━━━━━━━
Thus The new concentration of Fe will be 64times of initial concentration.