100°
3. In the adjoining figure,
LPQR= 100°, where P, Q and Rare
points on a circle with centre O. Find
LOPR.
[NCERT EXERCISE]
P
R
Answers
Answer:
helping....
Explanation:
Here, PR is chord
Here, PR is chordWe mark s on major arc of the circle.
Here, PR is chordWe mark s on major arc of the circle.∴ PQRS is a cyclic quadrilateral.
Here, PR is chordWe mark s on major arc of the circle.∴ PQRS is a cyclic quadrilateral.So, ∠PQR+∠PSR=180
Here, PR is chordWe mark s on major arc of the circle.∴ PQRS is a cyclic quadrilateral.So, ∠PQR+∠PSR=180 o
Here, PR is chordWe mark s on major arc of the circle.∴ PQRS is a cyclic quadrilateral.So, ∠PQR+∠PSR=180 o
Here, PR is chordWe mark s on major arc of the circle.∴ PQRS is a cyclic quadrilateral.So, ∠PQR+∠PSR=180 o [Sum of opposite angles of a cyclic quadrilateral is 180
Here, PR is chordWe mark s on major arc of the circle.∴ PQRS is a cyclic quadrilateral.So, ∠PQR+∠PSR=180 o [Sum of opposite angles of a cyclic quadrilateral is 180 o
Here, PR is chordWe mark s on major arc of the circle.∴ PQRS is a cyclic quadrilateral.So, ∠PQR+∠PSR=180 o [Sum of opposite angles of a cyclic quadrilateral is 180 o ]
Here, PR is chordWe mark s on major arc of the circle.∴ PQRS is a cyclic quadrilateral.So, ∠PQR+∠PSR=180 o [Sum of opposite angles of a cyclic quadrilateral is 180 o ]100+∠PSR=180
Here, PR is chordWe mark s on major arc of the circle.∴ PQRS is a cyclic quadrilateral.So, ∠PQR+∠PSR=180 o [Sum of opposite angles of a cyclic quadrilateral is 180 o ]100+∠PSR=180 o
Here, PR is chordWe mark s on major arc of the circle.∴ PQRS is a cyclic quadrilateral.So, ∠PQR+∠PSR=180 o [Sum of opposite angles of a cyclic quadrilateral is 180 o ]100+∠PSR=180 o
Here, PR is chordWe mark s on major arc of the circle.∴ PQRS is a cyclic quadrilateral.So, ∠PQR+∠PSR=180 o [Sum of opposite angles of a cyclic quadrilateral is 180 o ]100+∠PSR=180 o ∠PSR=180
Here, PR is chordWe mark s on major arc of the circle.∴ PQRS is a cyclic quadrilateral.So, ∠PQR+∠PSR=180 o [Sum of opposite angles of a cyclic quadrilateral is 180 o ]100+∠PSR=180 o ∠PSR=180 o
Here, PR is chordWe mark s on major arc of the circle.∴ PQRS is a cyclic quadrilateral.So, ∠PQR+∠PSR=180 o [Sum of opposite angles of a cyclic quadrilateral is 180 o ]100+∠PSR=180 o ∠PSR=180 o −100
Here, PR is chordWe mark s on major arc of the circle.∴ PQRS is a cyclic quadrilateral.So, ∠PQR+∠PSR=180 o [Sum of opposite angles of a cyclic quadrilateral is 180 o ]100+∠PSR=180 o ∠PSR=180 o −100 o
Here, PR is chordWe mark s on major arc of the circle.∴ PQRS is a cyclic quadrilateral.So, ∠PQR+∠PSR=180 o [Sum of opposite angles of a cyclic quadrilateral is 180 o ]100+∠PSR=180 o ∠PSR=180 o −100 o
Here, PR is chordWe mark s on major arc of the circle.∴ PQRS is a cyclic quadrilateral.So, ∠PQR+∠PSR=180 o [Sum of opposite angles of a cyclic quadrilateral is 180 o ]100+∠PSR=180 o ∠PSR=180 o −100 o ∠PSR=80
Here, PR is chordWe mark s on major arc of the circle.∴ PQRS is a cyclic quadrilateral.So, ∠PQR+∠PSR=180 o [Sum of opposite angles of a cyclic quadrilateral is 180 o ]100+∠PSR=180 o ∠PSR=180 o −100 o ∠PSR=80 o
So, ∠POR=2∠PSR
∠POR=2×80
∠POR=2×80 o
∠POR=2×80 o =160
∠POR=2×80 o =160 o
∠POR=2×80 o =160 o
∠POR=2×80 o =160 o Now,
∠POR=2×80 o =160 o Now,In ΔOPR,
∠POR=2×80 o =160 o Now,In ΔOPR,OP=OR
∴∠OPR=∠ORP
Also in ΔOPR,
Also in ΔOPR,∠OPR+∠ORP+∠POR=180
Also in ΔOPR,∠OPR+∠ORP+∠POR=180 o
Also in ΔOPR,∠OPR+∠ORP+∠POR=180 o (Angle sum property of triangle)
Also in ΔOPR,∠OPR+∠ORP+∠POR=180 o (Angle sum property of triangle)∠OPR+∠OPR+∠POR=180
Also in ΔOPR,∠OPR+∠ORP+∠POR=180 o (Angle sum property of triangle)∠OPR+∠OPR+∠POR=180 o
Also in ΔOPR,∠OPR+∠ORP+∠POR=180 o (Angle sum property of triangle)∠OPR+∠OPR+∠POR=180 o
2∠OPR+160=180
2∠OPR+160=180 o
2∠OPR+160=180 o
2∠OPR+160=180 o 2∠OPR=180
2∠OPR+160=180 o 2∠OPR=180 o
2∠OPR+160=180 o 2∠OPR=180 o −160
2∠OPR+160=180 o 2∠OPR=180 o −160 o
2∠OPR+160=180 o 2∠OPR=180 o −160 o
2∠OPR+160=180 o 2∠OPR=180 o −160 o 2∠OPR=20
2∠OPR+160=180 o 2∠OPR=180 o −160 o 2∠OPR=20∠OPR=20/2
2∠OPR+160=180 o 2∠OPR=180 o −160 o 2∠OPR=20∠OPR=20/2∴∠OPR=10
2∠OPR+160=180 o 2∠OPR=180 o −160 o 2∠OPR=20∠OPR=20/2∴∠OPR=10 o
2∠OPR+160=180 o 2∠OPR=180 o −160 o 2∠OPR=20∠OPR=20/2∴∠OPR=10 o