Math, asked by kjsgkaaaab, 11 months ago

10000000000000000000000000000000000000000000 Points

1) Find the curved and surface area and volume of the cone whose radius of base 21 cm and height 28cm?

Answers

Answered by vikram991
28

\huge{\bf{\underline{\red{Solution :}}}}

Given,

  • Height of the cone = 28 cm
  • Radius of Base = 21 cm

To Find,

  • Curved surface area = ?
  • Total surface area = ?
  • Volume of the cone = ?

Find,

⇒Firstly we find the slant height of the cone .

∴Slant height of the cone( l ) = \bold{\sqrt{r^{2} + h^{2} }}

\implies \bold{l = \sqrt{  21^{2} + 28^{2}  }}

\implies \bold{ l =  \sqrt{ 441 + 784}}

\implies \bold{l = \sqrt{  1225}}

\implies \boxed{\bold{ l = 35 \ cm }}

Now Curved Surface Area :-

\implies \boxed{\bold{ Curved \ Surface \ Area = \pi rl}}

\implies \bold{\frac{22}{7} \times 21 \times 35}

\implies \boxed{\bold{2310 \ cm^{2}}}

Now Total Surface Area :-

\implies \boxed{\bold{Total \ surface \ Area = \pi r(l + r})}

\implies \bold{\frac{22}{7} \times 21(35 + 21)}

\implies \bold{22 \times 3 \times 56 }

\implies \boxed{\bold{3696 \ cm^{2}}}

Now Find the Volume of the Cone :-

\implies \boxed{\bold{ Volume \ of \ the \ cone = \frac{1}{3} \times \pi r^{2} h}}

\implies \bold{\frac{1}{3} \times \frac{22}{7} \times 21 \times 21 \times 28}

\implies \bold{22 \times 3 \times 7 \times 28}

\implies \boxed{\bold{12936 \ cm^{3}}}

\rule{200}2

Answered by Anonymous
6

⠀⠀ıllıllı uoᴉʇnloS ıllıllı

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

Given:

  • Height = 28 cm
  • Radius of base = 21 cm

Need To Find:

  • Curved surface area = ?
  • Total surface area = ?
  • Volume of the cone = ?

Explanation:

Firsty,

  • Find the slant height of cone = ?

Therefore:

  • Slant height of cone (l) = √r² + h²

Putting the values:

➠ L = √21² + 28²

➠ L = √441 + 784

➠ L = √1225

L = 35 cm

  • Hence, the slant height of cone(l) = 35 cm.

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

In, Case 1:

  • Find the curved surface area = ?

Formula used here:

  • Curved surface area = πrl

Putting the values according to the given formula:

➠ 22/7 × 21 × 35

2310 cm²

  • Hence, the curved surface area = 2310 cm².

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

In Case 2:

  • Find the total surface area = ?

Formula used here:

  • Total surface area = πr(l + r)

Putting the values according to the given formula:

➠ 22/7 × 21(35 + 21)

➠ 22 × 3 × 56

3696 cm²

  • Hence, total surface area = 3696 cm².

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

In, Case 3:

  • Find the volume of cone = ?

Formula used here:

  • Volume of cone = 1/3 ×πr²h

Putting the values according to the given formula:

➠ 1/3 × 22/7 × 21 × 21 × 28

➠ 22 × 3 × 7 × 28

12936 cm³

  • Hence, volume of the cone = 12936 cm³.

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

Similar questions