Math, asked by angelicheart3, 6 months ago

10gm., 30gm and 60gm are at 20cm, 40cm
and 80cm on light metre scale. The position
of the centre of mass of the system is​

Answers

Answered by JAINAMSHAH06677
5

Answer:

100gm and 140 total is 250

Step-by-step explanation:

PLZ PLZ FOLLOW ME

PLZ PLZ FOLLOW MEPLZ PLZ MARK MY ANSWER AS BRAINLISTT ANSWER

PLZ PLZ FOLLOW MEPLZ PLZ MARK MY ANSWER AS BRAINLISTT ANSWERPLZ PLZ GIVE ME 20 THANKS

Answered by BʀᴀɪɴʟʏAʙCᴅ
0

\huge{\fcolorbox{pink}{indigo}{\fcolorbox{lime}{purple}{\fcolorbox{red}{gray}{\green{Good\: Night}}}}} \\

\bf\pink{For\: Center\:Of\:Mass,\:we\: know \:that} \\

\blue\bigstar\:\bf\green{X_{cm}\:=\:\dfrac{M_1\:X_1\:+\:M_2\:X_2\:+\:M_3\:X_3}{M_1\:+\:M_2\:+\:M_3}\:} \\

\Large\bf\orange{Where,} \\

  • \bf\red{M_1} = 10 gm.

  • \bf\green{M_2} = 30 gm.

  • \bf\red{M_3} = 60 gm.

  • \bf\green{X_1} = 20 cm.

  • \bf\red{X_2} = 40 cm.

  • \bf\green{M_1} = 80 cm.

\longmapsto\:\rm{X_{cm}\:=\:\dfrac{10\times{20}\:+\:30\times{40}\:+\:60\times{80}}{10\:+\:30\:+\:60}\:} \\

\longmapsto\:\rm{X_{cm}\:=\:\dfrac{200\:+\:1200\:+\:4800}{1000}\:} \\

\longmapsto\:\rm{X_{cm}\:=\:\dfrac{6200}{1000}\:} \\

\red\longmapsto\:\rm\pink{X_{cm}\:=\:62\:cm} \\

\bold\therefore The position of the centre of mass of the system is 62 cm from zero cm towards the metre scale.

Similar questions