Math, asked by sudipta9553, 29 days ago

11,22,33. In this arthematic sequence Find 30 th term. Find algebraic form. Find sum if first 25 terms.

Answers

Answered by abhi569
22

First term(a) = 11

Common difference(d) = 22 - 11 = 11

Formula: nth term = a + (n - 1)d

(i): 30th term = 11 + (30 - 1)(11)

30th term = 330

(ii): Let any term be nth term = a + (n - 1)d = 11 + (n - 1)11

General term: 11 + 11n - 11

General term: 11n

Algebraic form is 11n

(iii): sum of n terms = (n/2) [2a + (n - 1)d]

Sum of 25 terms = (25/2) [2(11) + 24(11)]

Sum of 25 terms = 3575

Answered by Anonymous
37

 \red{ \qquad \underline{ \pmb{{ \mathbb{ \maltese  \:  COMPLETE \:  \:  QUESTION  \:   \maltese }}}}}

  • 11,22,33. In this arthematic sequence Find 30 th term. Find algebraic form. Find sum if first 25 terms.

\Large\green{\qquad\underline{\pmb{{ \mathbb { \maltese  \:  GIVEN \:   \maltese }}}}}

Here ,

a =t1 = 11

t2 = 22

t3 = 33

 \purple{\qquad \qquad \underline{ \pmb{{ \mathbb{ \maltese  \:  REQUIRED  \:  \: INFO \:   \maltese }}}}}

d = t2 - t1= 22 - 11 = 11

  \Large \orange{\qquad \underline{ \pmb{{ \mathbb{ \maltese  \: Formula  \:   \maltese }}}}}

n  \: term \: = a  + (n - 1) \times d

\huge\boxed{\fcolorbox{pink}{ink}{TO FIND:}}

30  \: th \:  term

  \Large \orange{\qquad \underline{ \pmb{{ \mathbb{ \maltese  \: Solution \:   \maltese }}}}}

{30  \: th \:  term  = 11 +( 13 - 1) \times 11}

Therefore,

30  \: th \:  term  = 330

 \large \mathfrak{ \text{W}e \:   \text{K}now }

{General  \: term = 11+(11n-11)}

General  \: term = 11n

Now :

Now :Sum of 25 term :

Sn =  \frac{n}{2}  \times (2a + (n - 1) \times d)

 \frac{25}{2}  \times 2 \times 11 + (25- 1) \times 11

\huge\fbox\pink{✯Final Answer✯}

  • The Sum of 25 term is

\huge\boxed{\dag\sf\blue{= 3575}\dag}

\huge\boxed{\dag\sf\red{Thanks}\dag}

Similar questions