Physics, asked by 11111a, 19 days ago

11. A capacitor of capacitance 10^-4/pi F, an inductor of inductance 2/ pi H and a resistor of resistance 100 ohm are connected to form a series RLC circuit. When an AC supply of 220V, 50 Hz is applied to the circuit, determine the impedance of the circuit.​

Answers

Answered by Sreerambrainly
11

Answer:

141.4 ohms

Explanation:

Attached above

Attachments:
Answered by NehaKari
1

Given :

Capacitance (C) = \frac{10^{-4} }{\pi } F

Inductance (L) = \frac{2}{\pi } H

Resistance (R) = 100 ohm

Frequency (n) = 50 Hz

To Find :

Impedance of the circuit

Solution :

Angular frequency (ω) = 2\pin

                                     = 2\pi50 = 100

Inductive reactance (X_{L}) = Lω = \frac{2}{\pi } × 100\pi

                                         = 200 ohm

Capacitive reactance (X_{c}) = \frac{1}{Cw} = \frac{1}{\frac{10^{-4} }{\pi } * 100\pi  }

                                           = 10^{2} = 100 ohm

Impedance (z) = \sqrt{(X_{L}  - X_{C})^{2}  + R^{2}

                    z  =  \sqrt{(200-100 )^2 + 100^{2}

                    z  =  \sqrt{100^{2}  + 100^{2} }

                    z  = \sqrt{100^{2}(1+1) }

                    z  = 100\sqrt{2}

                    z  = 141.4 ohm

∴ The impedance of the given LCR circuit is 141.4 ohm.

Similar questions