Math, asked by yuvrajberlia, 3 months ago

11. Area of a rhombus is 90 cm2. If the length of one diagonal is 10 cm then what is length of second diagonal​

Answers

Answered by Flaunt
21

Given

Area of rhombus is 90cm²

Length of one diagonal is 10cm

To Find

we have to find the length of second diagonal

\sf\huge\bold{\underline{\underline{{Solution}}}}

Since,Area is given so,we will apply the formula for area of rhombus and assume some Variable in place of Diagonal 2 we have to find .

Area of Rhombus= D1 × D2 ÷ 2

↣Area of Rhombus= 10× Diagonal 2 ÷ 2

let length of other diagonal be 'x'

↣90= 10 × x ÷2

↣90= 10x/2

↣10x= 90×2

↣10x=180

↣x=180/10=18

↣x= 18

hence,length of other diagonal is 18cm

Check:

Area of Rhombus= 18×10÷2

Area of Rhombus= 180÷2=90cm²

Extra information=>

Area is Space or region which is covered by a solid object/figure it is said to be area of that object.

Area depends upon the dimensions of the figure.If dimensions is larger then larger will be the area of that object/figure and vice -versa.

Properties of Rhombus:

  • All sides of rhombus are equal and opposite sides are parallel.
  • Diagonals of Rhombus bisects each other at 90°.
  • There are four congruent right angled triangles formed between the two diagonals
Answered by ItzBrainlyBeast
16

\large\textsf{                                                               }

\LARGE\textsf{\underline\textcolor{aqua}{↭ GiVeN :-}}

\large\textsf{                                                               }

\qquad\tt{:}\longrightarrow\large\textsf{Area of the Rhombus = 90 cm²}

\qquad\tt{:}\longrightarrow\large\textsf{Length of one diagonal = 10 cm}

\large\textsf{                                                               }

\LARGE\textsf{\underline\textcolor{aqua}{↭ To FiNd :-}}

\large\textsf{                                                               }

\qquad\tt{:}\longrightarrow\large\textsf{Length of the second diagonal = ?}

\large\textsf{                                                               }

\LARGE\textsf{\underline\textcolor{aqua}{↭ FoRmUlA :-}}

\large\textsf{                                                               }

\qquad\tt{:}\longrightarrow\boxed{\large\textsf\textcolor{purple}{${\large\textsf{Area}}_{\normalsize\textsf{( \; Rhombus \; )}} = \cfrac{\large\textsf{1}}{\large\textsf{2}} × \large\textsf{ D1 × D2}$}}

\large\textsf{                                                               }

\LARGE\textsf{\underline\textcolor{aqua}{↭ SoLuTiOn :-}}

\large\textsf{                                                               }

\qquad\tt{:}\longrightarrow\large\textsf{${\large\textsf{Area}}_{\normalsize\textsf{( \; Rhombus \; )}} = \cfrac{\large\textsf{1}}{\large\textsf{2}} × \large\textsf{ D1 × D2}$}\\\\\\\qquad\tt{:}\longrightarrow\large\textsf{90 =$ \cfrac{\large\textsf{1}}{\large\textsf{2}} × \large\textsf{ 10 × D2}$}\\\\\\\qquad\tt{:}\longrightarrow\large\textsf{$\cfrac{\large\textsf{90 × 2}}{\large\textsf{10}} = \large\textsf{ D2 }$}\\\\\\\qquad\tt{:}\longrightarrow\large\textsf{$\cancel{\cfrac{\large\textsf{180}}{\large\textsf{10}}} = \large\textsf{ D2 }$}\\\\\\\qquad\tt{:}\longrightarrow\boxed{\large\textsf\textcolor{red}{18 = D2}}

\large\textsf{                                                               }

\large\textsf\textcolor{orange}{∴ The length of the second diagonal = 18 cm}

\large\textsf{                                                               }

\LARGE\textsf{\underline\textcolor{aqua}{↭ MoRe FoRmUlAs :-}}

\large\textsf{                                                               }

\large\textsf{${\large\textsf{L.S.A.}}_{\large\textsf{( \; Cuboid \; )}} = \large\textsf{2h ( l + b )}$}

\large\textsf{${\large\textsf{T.S.A.}}_{\large\textsf{( \; Cuboid \; )}} = \large\textsf{2 ( lb + bh + hl )}$}

\large\textsf{${\large\textsf{Volume}}_{\large\textsf{( \; Cuboid \; )}} = \large\textsf{l×b×h}$}

\large\textsf{                                                               }

\large\textsf{${\large\textsf{L.S.A.}}_{\large\textsf{( \; Cube \; )}} = \large\textsf{4×l²}$}

\large\textsf{${\large\textsf{T.S.A.}}_{\large\textsf{( \; Cube \; )}} = \large\textsf{6 × l²}$}

\large\textsf{${\large\textsf{Volume}}_{\large\textsf{( \; Cube \; )}} = \large\textsf{l²}$}

\large\textsf{                                                               }

\large\textsf{${\large\textsf{C.S.A.}}_{\large\textsf{( \; Cylinder \; )}} = \large\textsf{2 × πrh}$}

\large\textsf{${\large\textsf{T.S.A.}}_{\large\textsf{( \; Cylinder \; )}} = \large\textsf{2πr × ( r + h )}$}

\large\textsf{${\large\textsf{Volume}}_{\large\textsf{( \; Cylinder \; )}} = \large\textsf{πr²h}$}

\large\textsf{                                                               }

\large\textsf{${\large\textsf{C.S.A.}}_{\large\textsf{( \; Cone \; )}} = \large\textsf{πrl}$}

\large\textsf{${\large\textsf{T.S.A.}}_{\large\textsf{( \; Cone \; )}} = \large\textsf{πr × ( r + l )}$}

\large\textsf{${\large\textsf{Volume}}_{\large\textsf{( \; Cone \; )}} $} \large\textsf{ =$\cfrac{\large\textsf{1}}{\large\textsf{3}}$}\large\textsf{× πr²h}

\large\textsf{                                                               }

\large\textsf{${\large\textsf{T.S.A.}}_{\large\textsf{( \; Sphere \; )}} = \large\textsf{4πr²}$}

\large\textsf{${\large\textsf{Volume}}_{\large\textsf{( \; Sphere \; )}} $} \large\textsf{ =$\cfrac{\large\textsf{4}}{\large\textsf{3}}$}\large\textsf{× πr³}

\large\textsf{                                                               }

\large\textsf\textcolor{purple}{     \; \; \; \;   \; \; \; \; \; \; \; \;                ◈ ━━━━━━━ ✪ ━━━━━━━ ◈}

Similar questions