Math, asked by astha7555, 6 months ago

11. Find the area of the shaded region in
triangle.
plz.. give me correct and fast answer. Its urgent.
I also mark solution as brainliest

Attachments:

Answers

Answered by srikar03
1

Answer:

I hope it helps you

please mark me as brainleist to gain my next rank up thank you❤

Attachments:
Answered by vanshikavikal448
131

 \huge  {\red{\fcolorbox{green}{grey}{required \: answer}}}

  \bold{{ \underline{ \underline \orange{answer}}}} \orange{→}

384cm²

 \bold{{ \underline{ \underline \orange{solution}}}} \orange{→}

Triangle ABD is a right angle triangle...

so, AD² + BD² = AB²

   \bold{ \tt\implies \: { AB}^{2} =   } {(12)}^{2}  +  {(16)}^{2}  \\  \\  \bold{ \tt  \implies \: AB^{2}  = 144 + 256 } \:  \:  \:  \\  \\  \bold{ \tt \implies \: AB^{2}  = 400 } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \\  \bold{ \tt \implies \:  AB =  \sqrt{400} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  } \\  \\  \bold{ \tt \implies \: AB = 20cm \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  }

so, length of side AB is 20cm

now find area of triangle ABC by heron's formula

  \pink{\bold{ \tt \: if \: a, \: b \: and \: c \: are \: sides \: of \:  \triangle} }  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \pink{ \bold{ \tt area\: =  \sqrt{s(s - a)(s - b)(s - c)} }}  \\  \\  \pink{\bold{ \tt and \:  \:  \:  \:  \:  \:  \:  s =  \frac{a + b + c}{2} }} \:  \:  \:  \:  \:  \:  \:

here,

 \bold{ \tt \: s =  \frac{AB  +  BC +  CA}{2} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \bold{ \tt \implies \: s =  \frac{20 + 48 + 52}{2} } \\  \\  \bold{ \tt \implies \: s =  \frac{120}{2} }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\ \bold{ \tt \implies \: s = 60}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

so area of triangle ABC ,

 \bold{ \tt \: a1 =  \sqrt{60(60 - 20)(60 - 48)(60 - 52)} } \\  \\ \bold{ \tt  \implies \:a1\:  =  \sqrt{60 \times 40 \times 12 \times 8} }   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \\ \bold{ \tt \: \implies a1 = 10 \sqrt{6 \times 4 \times 2 \times 6 \times 2 \times 4}  }   \:  \:  \:  \:  \:  \:  \:   \\  \\  \bold{ \tt \implies \:  a1 =10 \times 6 \times 2 \times 4 } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \\ \blue{ \bold{ \tt \implies \:a1 = 480 {cm}^{2}  }} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

now , find area of triangle ABD

we know that..

  \pink{\bold{ \tt \: area \: of  \: \triangle =  \frac{1}{2} \times b \times h }} \\

so area of triangle ABD,

 \bold{ \tt \: a2 =  \frac{1}{2}  \times \: AD \times  BD} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \bold{ \tt  \implies \: \: a2 =  \frac{1}{2}  \times 12 \times 16} \\  \\  \bold{ \tt \implies \: a2 = 6 \times 16} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\   \blue{\bold{ \tt \implies \: a2 = 96  {cm}^{2} }} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

and area of shaded region,

A = area of ∆ABC - area of ∆ABD

 \bold{ \tt \implies  A = \: a1 - a2 } \\  \\  \bold{ \tt \implies  A =480 -96  } \\  \\  \red{ \bold{  \tt \implies A = 384 {cm}^{2} } \:  \:  \:  \: }

hence, area of shaded region is 384cm²

Similar questions