11. Find the rectangular components of a vector Ã, 15 unit
long when it form an angle with respect to +ve x-axis of (1) 50°,
(1) 130° (ill) 230°, (iv) 310°
Answers
Answer:
I have to learn that
Explanation:
sorry
Given:
The magnitude of vector à = 15 units
To Find:
Rectangular components of vector à when it makes the following angles with x-axis:
(1) 50°,
(2) 130°
(3) 230°
(4) 310°
Solution:
- Rectangular components of a vector are expressed as :
à = AcosФ iˆ + AsinФ jˆ
where Ф is the angle made by a vector from the x-axis.
- Using this property we will solve for all parts.
(1) Ф = 50°
Components of vector = Acos50° iˆ +Asin50°jˆ
⇒ 0.642 Aiˆ + 0.766Ajˆ
⇒ 9.63 i^ + 11.49j^
(2) Ф = 130°
Components of vector = Acos130° iˆ +Asin130°jˆ
⇒ -0.642Aiˆ + 0.766Ajˆ
⇒ -9.63i^ + 11.49j^
(3) Ф =230°
Components of vector = Acos230 iˆ +Asin230°jˆ
⇒ -0.642Aiˆ -0.766Ajˆ
⇒ -9.63i^ - 11.49j^
(4) Ф = 310°
Components of vector = Acos310° iˆ +Asin310°jˆ
⇒ 0.642Aiˆ -0.766Ajˆ
⇒ 9.63i^ -11.49j^
Thus rectangular components of vector à is:
(1) 9.63 i^ + 11.49j^
(2) -9.63i^ + 11.49j^
(3) -9.63i^ - 11.49j^
(4) 9.63i^ -11.49j^