Math, asked by nishitha2468, 6 months ago

11
From a solid cylinder block of radius 3x and height 8x, a sphere of radius x cm is drilled out
Find the volume of the remaining block.​

Answers

Answered by Cynefin
56

Required Answer:

To find the volume of the remaining block, we can simply subtract the volume of the sphere from the volume of the cylinder.

GiveN:-

  • Radius and height of the solid cylinder is 3x cm and 8x cm.
  • Radius of solid sphere = x cm

To FinD:-

  • Volume of remaining block?

Step-by-Step Explanation:-

Volume of the remaining block = Volume of the cylinder - Volume of the sphere.

Formula we have to use:

  • Volume of cylinder = πr²h
  • Volume of sphere = 4/3 πr³

Finding the volume:

= πr'²h - 4/3 πr³

= π(3x)²8x - 4/3 πx³

= π(72x³) - 4/3 πx³

= π(72x³ - 4/3x³)

= π(212/3 x³)

= 22/7 × 212/3 x³

= 222.1 x³ (approx.)

Hence:-

  • The required volume of the remaining block is 222.1 x³ (Answer)
Answered by MяMαgıcıαη
162

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

{ \bold { \underline{\large{Given :  - }}}} \:

❍ Radius and height of cylinder block is ㅤ3x and 8x respectively.

❍ Radius of sphere which is drilled out ㅤfrom cylinder block is x cm.

{ \bold { \underline{\large{To\:Find :  - }}}} \:

❍ Volume of the remaining block.

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\large\boxed{\boxed{\sf{So\:let's \:do\:it\:!!}}}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

{\red\bigstar\: { \boxed{\large{\bold\green{Volume_{(Cylinder\:block)}\:\leadsto\:\pi r^2 h }}}}} \:

Putting all values :-

we will not put the value of pi to make the calculation easy!

\longmapsto \sf{\pi\:\times\:(3x)^2\:\times\:8x}

\longmapsto \bold{\pi\:\times\:9x^2\:\times\:8x}

\longmapsto \boxed{\bold{\pi\:\times\:72x^3}}\:\bigstar\:\:\:\:\red\leadsto\:\red{(1)}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

{\red\bigstar\: { \boxed{\large{\bold\green{Volume_{(Sphere\:which\:is\:drilled\:out!)}\:\leadsto\:\dfrac{4}{3}\pi r^3}}}}} \:

Putting all values :-

Putting all values :- we will not put the value of pi to make the calculation easy!

\longmapsto \bold{\dfrac{4}{3}\:\pi \:\times\:(x)^3}

\longmapsto \boxed{\bold{\pi\:\times\:\dfrac{4}{3}x^3}}\:\bigstar\:\:\:\:\red\leadsto\:\red{(2)}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

To find the volume of remaining block we had to subtract (2) from (1) i.e we had to subtract volume of sphere from volume of cylinder.

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Subtracting (2) from (1) :-

\longmapsto \bold{(\pi\:\times\:72x^3)\:-\:\bigg(\pi\:\times\:\dfrac{4}{3}x^3\bigg)}

Value of pi is equal in both . So, we will take pi common to make calculation easy.

\longmapsto \bold{\pi\bigg(72x^3\:-\:\dfrac{4}{3}x^3\bigg)}

\longmapsto \bold{\pi\bigg(\dfrac{216x^3\:-\:4x^3}{3}\bigg)}

\longmapsto \bold{\pi\bigg(\dfrac{212}{3}x^3\bigg)}

Now we will put value of pi to complete our answer.

\longmapsto \bold{\bigg(\dfrac{22}{7}\bigg)\bigg(\dfrac{212}{3}x^3\bigg)}

\longmapsto \bold{\dfrac{22}{7}\:\times\:\dfrac{212}{3}\:\times\:x^3}

\longmapsto \bold{\dfrac{4664}{21}\:\times\:x^3}

\longmapsto \bold{\cancel{\dfrac{4664}{21}}\:\times\:x^3}

\longmapsto \bold{222.09\:\times\:x^3}

\longmapsto \boxed{\bold{222.09x^3}}\:\bigstar

\boxed {\frak {\therefore \purple {Volume\:of\:the\:remaining\:block\:\leadsto\:222.09x^3}}}\:\pink\bigstar

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━


Glorious31: Nice :D
Anonymous: Perfect!
Similar questions